ترغب بنشر مسار تعليمي؟ اضغط هنا

206 - Tamal K. Dey , Cheng Xin 2021
One of the main reasons for topological persistence being useful in data analysis is that it is backed up by a stability (isometry) property: persistence diagrams of $1$-parameter persistence modules are stable in the sense that the bottleneck distan ce between two diagrams equals the interleaving distance between their generating modules. However, in multi-parameter setting this property breaks down in general. A simple special case of persistence modules called rectangle decomposable modules is known to admit a weaker stability property. Using this fact, we derive a stability-like property for $2$-parameter persistence modules. For this, first we consider interval decomposable modules and their optimal approximations with rectangle decomposable modules with respect to the bottleneck distance. We provide a polynomial time algorithm to exactly compute this optimal approximation which, together with the polynomial-time computable bottleneck distance among interval decomposable modules, provides a lower bound on the interleaving distance. Next, we leverage this result to derive a polynomial-time computable distance for general multi-parameter persistence modules which enjoys similar stability-like property. This distance can be viewed as a generalization of the matching distance defined in the literature.
Multivector fields provide an avenue for studying continuous dynamical systems in a combinatorial framework. There are currently two approaches in the literature which use persistent homology to capture changes in combinatorial dynamical systems. The first captures changes in the Conley index, while the second captures changes in the Morse decomposition. However, such approaches have limitations. The former approach only describes how the Conley index changes across a selected isolated invariant set though the dynamics can be much more complicated than the behavior of a single isolated invariant set. Likewise, considering a Morse decomposition omits much information about the individual Morse sets. In this paper, we propose a method to summarize changes in combinatorial dynamical systems by capturing changes in the so-called Conley-Morse graphs. A Conley-Morse graph contains information about both the structure of a selected Morse decomposition and about the Conley index at each Morse set in the decomposition. Hence, our method summarizes the changing structure of a sequence of dynamical systems at a finer granularity than previous approaches.
83 - Tamal K. Dey , Tao Hou 2021
In standard persistent homology, a persistent cycle born and dying with a persistence interval (bar) associates the bar with a concrete topological representative, which provides means to effectively navigate back from the barcode to the topological space. Among the possibly many, optimal persistent cycles bring forth further information due to having guaranteed quality. However, topological features usually go through variations in the lifecycle of a bar which a single persistent cycle may not capture. Hence, for persistent homology induced from PL functions, we propose levelset persistent cycles consisting of a sequence of cycles that depict the evolution of homological features from birth to death. Our definition is based on levelset zigzag persistence which involves four types of persistence intervals as opposed to the two types in standard persistence. For each of the four types, we present a polynomial-time algorithm computing an optimal sequence of levelset persistent $p$-cycles for the so-called weak $(p+1)$-pseudomanifolds. Given that optimal cycle problems for homology are NP-hard in general, our results are useful in practice because weak pseudomanifolds do appear in applications. Our algorithms draw upon an idea of relating optimal cycles to min-cuts in a graph that we exploited earlier for standard persistent cycles. Note that levelset zigzag poses non-trivial challenges for the approach because a sequence of optimal cycles instead of a single one needs to be computed in this case.
Curve reconstruction from unstructured points in a plane is a fundamental problem with many applications that has generated research interest for decades. Involved aspects like handling open, sharp, multiple and non-manifold outlines, run-time and pr ovability as well as potential extension to 3D for surface reconstruction have led to many different algorithms. We survey the literature on 2D curve reconstruction and then present an open-sourced benchmark for the experimental study. Our unprecedented evaluation on a selected set of planar curve reconstruction algorithms aims to give an overview of both quantitative analysis and qualitative aspects for helping users to select the right algorithm for specific problems in the field. Our benchmark framework is available online to permit reproducing the results, and easy integration of new algorithms.
175 - Tamal K. Dey , Tao Hou 2021
Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one in strument for analyzing such changing graph data. However, standard persistent homology defined over a growing space cannot always capture such a dynamic process unless shrinking with deletions is also allowed. Hence, zigzag persistence which incorporates both insertions and deletions of simplices is more appropriate in such a setting. Unlike standard persistence which admits nearly linear-time algorithms for graphs, such results for the zigzag version improving the general $O(m^omega)$ time complexity are not known, where $omega< 2.37286$ is the matrix multiplication exponent. In this paper, we propose algorithms for zigzag persistence on graphs which run in near-linear time. Specifically, given a filtration with $m$ additions and deletions on a graph with $n$ vertices and edges, the algorithm for $0$-dimension runs in $O(mlog^2 n+mlog m)$ time and the algorithm for 1-dimension runs in $O(mlog^4 n)$ time. The algorithm for $0$-dimension draws upon another algorithm designed originally for pairing critical points of Morse functions on $2$-manifolds. The algorithm for $1$-dimension pairs a negative edge with the earliest positive edge so that a $1$-cycle containing both edges resides in all intermediate graphs. Both algorithms achieve the claimed time complexity via dynamic graph data structures proposed by Holm et al. In the end, using Alexander duality, we extend the algorithm for $0$-dimension to compute the $(p-1)$-dimensional zigzag persistence for $mathbb{R}^p$-embedded complexes in $O(mlog^2 n+mlog m+nlog n)$ time.
110 - Tamal K. Dey , Cheng Xin 2019
The classical persistence algorithm virtually computes the unique decomposition of a persistence module implicitly given by an input simplicial filtration. Based on matrix reduction, this algorithm is a cornerstone of the emergent area of topological data analysis. Its input is a simplicial filtration defined over the integers $mathbb{Z}$ giving rise to a $1$-parameter persistence module. It has been recognized that multi-parameter version of persistence modules given by simplicial filtrations over $d$-dimensional integer grids $mathbb{Z}^d$ is equally or perhaps more important in data science applications. However, in the multi-parameter setting, one of the main challenges is that topological summaries based on algebraic structure such as decompositions and bottleneck distances cannot be as efficiently computed as in the $1$-parameter case because there is no known extension of the persistence algorithm to multi-parameter persistence modules. We present an efficient algorithm to compute the unique decomposition of a finitely presented persistence module $M$ defined over the multiparameter $mathbb{Z}^d$.The algorithm first assumes that the module is presented with a set of $N$ generators and relations that are emph{distinctly graded}. Based on a generalized matrix reduction technique it runs in $O(N^{2omega+1})$ time where $omega<2.373$ is the exponent for matrix multiplication. This is much better than the well known algorithm called Meataxe which runs in $tilde{O}(N^{6(d+1)})$ time on such an input. In practice, persistence modules are usually induced by simplicial filtrations. With such an input consisting of $n$ simplices, our algorithm runs in $O(n^{2omega+1})$ time for $d=2$ and in $O(n^{d(2omega + 1)})$ time for $d>2$.
Data analysis often concerns not only the space where data come from, but also various types of maps attached to data. In recent years, several related structures have been used to study maps on data, including Reeb spaces, mappers and multiscale map pers. The construction of these structures also relies on the so-called emph{nerve} of a cover of the domain. In this paper, we aim to analyze the topological information encoded in these structures in order to provide better understanding of these structures and facilitate their practical usage. More specifically, we show that the one-dimensional homology of the nerve complex $N(mathcal{U})$ of a path-connected cover $mathcal{U}$ of a domain $X$ cannot be richer than that of the domain $X$ itself. Intuitively, this result means that no new $H_1$-homology class can be created under a natural map from $X$ to the nerve complex $N(mathcal{U})$. Equipping $X$ with a pseudometric $d$, we further refine this result and characterize the classes of $H_1(X)$ that may survive in the nerve complex using the notion of emph{size} of the covering elements in $mathcal{U}$. These fundamental results about nerve complexes then lead to an analysis of the $H_1$-homology of Reeb spaces, mappers and multiscale mappers. The analysis of $H_1$-homology groups unfortunately does not extend to higher dimensions. Nevertheless, by using a map-induced metric, establishing a Gromov-Hausdorff convergence result between mappers and the domain, and interleaving relevant modules, we can still analyze the persistent homology groups of (multiscale) mappers to establish a connection to Reeb spaces.
Detecting the dimension of a hidden manifold from a point sample has become an important problem in the current data-driven era. Indeed, estimating the shape dimension is often the first step in studying the processes or phenomena associated to the d ata. Among the many dimension detection algorithms proposed in various fields, a few can provide theoretical guarantee on the correctness of the estimated dimension. However, the correctness usually requires certain regularity of the input: the input points are either uniformly randomly sampled in a statistical setting, or they form the so-called $(varepsilon,delta)$-sample which can be neither too dense nor too sparse. Here, we propose a purely topological technique to detect dimensions. Our algorithm is provably correct and works under a more relaxed sampling condition: we do not require uniformity, and we also allow Hausdorff noise. Our approach detects dimension by determining local homology. The computation of this topological structure is much less sensitive to the local distribution of points, which leads to the relaxation of the sampling conditions. Furthermore, by leveraging various developments in computational topology, we show that this local homology at a point $z$ can be computed emph{exactly} for manifolds using Vietoris-Rips complexes whose vertices are confined within a local neighborhood of $z$. We implement our algorithm and demonstrate the accuracy and robustness of our method using both synthetic and real data sets.
We study the effect of edge contractions on simplicial homology because these contractions have turned to be useful in various applications involving topology. It was observed previously that contracting edges that satisfy the so called link conditio n preserves homeomorphism in low dimensional complexes, and homotopy in general. But, checking the link condition involves computation in all dimensions, and hence can be costly, especially in high dimensional complexes. We define a weaker and more local condition called the p-link condition for each dimension p, and study its effect on edge contractions. We prove the following: (i) For homology groups, edges satisfying the p- and (p-1)-link conditions can be contracted without disturbing the p-dimensional homology group. (ii) For relative homology groups, the (p-1)-, and the (p-2)-link conditions suffice to guarantee that the contraction does not introduce any new class in any of the resulting relative homology groups, though some of the existing classes can be destroyed. Unfortunately, the surjection in relative homolgy groups does not guarantee that no new relative torsion is created. (iii) For torsions, edges satisfying the p-link condition alone can be contracted without creating any new relative torsion and the p-link condition cannot be avoided. The results on relative homology and relative torsion are motivated by recent results on computing optimal homologous chains, which state that such problems can be solved by linear programming if the complex has no relative torsion. Edge contractions that do not introduce new relative torsions, can safely be availed in these contexts.
The efficiency of extracting topological information from point data depends largely on the complex that is built on top of the data points. From a computational viewpoint, the most favored complexes for this purpose have so far been Vietoris-Rips an d witness complexes. While the Vietoris-Rips complex is simple to compute and is a good vehicle for extracting topology of sampled spaces, its size is huge--particularly in high dimensions. The witness complex on the other hand enjoys a smaller size because of a subsampling, but fails to capture the topology in high dimensions unless imposed with extra structures. We investigate a complex called the {em graph induced complex} that, to some extent, enjoys the advantages of both. It works on a subsample but still retains the power of capturing the topology as the Vietoris-Rips complex. It only needs a graph connecting the original sample points from which it builds a complex on the subsample thus taming the size considerably. We show that, using the graph induced complex one can (i) infer the one dimensional homology of a manifold from a very lean subsample, (ii) reconstruct a surface in three dimension from a sparse subsample without computing Delaunay triangulations, (iii) infer the persistent homology groups of compact sets from a sufficiently dense sample. We provide experimental evidences in support of our theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا