ﻻ يوجد ملخص باللغة العربية
In standard persistent homology, a persistent cycle born and dying with a persistence interval (bar) associates the bar with a concrete topological representative, which provides means to effectively navigate back from the barcode to the topological space. Among the possibly many, optimal persistent cycles bring forth further information due to having guaranteed quality. However, topological features usually go through variations in the lifecycle of a bar which a single persistent cycle may not capture. Hence, for persistent homology induced from PL functions, we propose levelset persistent cycles consisting of a sequence of cycles that depict the evolution of homological features from birth to death. Our definition is based on levelset zigzag persistence which involves four types of persistence intervals as opposed to the two types in standard persistence. For each of the four types, we present a polynomial-time algorithm computing an optimal sequence of levelset persistent $p$-cycles for the so-called weak $(p+1)$-pseudomanifolds. Given that optimal cycle problems for homology are NP-hard in general, our results are useful in practice because weak pseudomanifolds do appear in applications. Our algorithms draw upon an idea of relating optimal cycles to min-cuts in a graph that we exploited earlier for standard persistent cycles. Note that levelset zigzag poses non-trivial challenges for the approach because a sequence of optimal cycles instead of a single one needs to be computed in this case.
Graphs model real-world circumstances in many applications where they may constantly change to capture the dynamic behavior of the phenomena. Topological persistence which provides a set of birth and death pairs for the topological features is one in
Computation of persistent homology of simplicial representations such as the Rips and the Cv{e}ch complexes do not efficiently scale to large point clouds. It is, therefore, meaningful to devise approximate representations and evaluate the trade-off
The Discrete Morse Theory of Forman appeared to be useful for providing filtration-preserving reductions of complexes in the study of persistent homology. So far, the algorithms computing discrete Morse matchings have only been used for one-dimension
Algorithms for persistent homology and zigzag persistent homology are well-studied for persistence modules where homomorphisms are induced by inclusion maps. In this paper, we propose a practical algorithm for computing persistence under $mathbb{Z}_2
Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. While standard persistent homo