ترغب بنشر مسار تعليمي؟ اضغط هنا

101 - Rui Du , Yunfei Ma , Talal Rahman 2014
In this paper we consider second order elliptic partial differential equations with highly varying (heterogeneous) coefficients on a two-dimensional region. The problems are discretized by a composite finite element (FE) and discontinuous Galerkin (D G) Method. The fine grids are in general nonmatching across the subdomain boundaries, and the subdomain partitioning does not need to resolve the jumps in the coefficient. A FETI-DP preconditioner is proposed and analyzed to solve the resulting linear system. Numerical results are presented to support our theory.
In this paper, we present two variants of the Additive Schwarz Method for a Crouzeix-Raviart finite volume element (CRFVE) discretization of second order elliptic problems with discontinuous coefficients where the discontinuities are only across subd omain boundaries. One preconditioner is symmetric while the other is nonsymmetric. The proposed methods are almost optimal, in the sense that the residual error estimates for the GMRES iteration in the both cases depend only polylogarithmically on the mesh parameters.
A symmetric and a nonsymmetric variant of the additive Schwarz preconditioner are proposed for the solution of a nonsymmetric system of algebraic equations arising from a general finite volume element discretization of symmetric elliptic problems wit h large jumps in the entries of the coefficient matrices across subdomains. It is shown in the analysis, that the convergence of the preconditioned GMRES iteration with the proposed preconditioners, depends polylogarithmically on the mesh parameters, in other words, the convergence is only weakly dependent on the mesh parameters, and it is robust with respect to the jumps in the coefficients.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا