ترغب بنشر مسار تعليمي؟ اضغط هنا

A FETI-DP preconditioner of discontinuous Galerkin method for multiscale problems in high constrast media

151   0   0.0 ( 0 )
 نشر من قبل Talal Rahman
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider second order elliptic partial differential equations with highly varying (heterogeneous) coefficients on a two-dimensional region. The problems are discretized by a composite finite element (FE) and discontinuous Galerkin (DG) Method. The fine grids are in general nonmatching across the subdomain boundaries, and the subdomain partitioning does not need to resolve the jumps in the coefficient. A FETI-DP preconditioner is proposed and analyzed to solve the resulting linear system. Numerical results are presented to support our theory.



قيم البحث

اقرأ أيضاً

Numerical simulation of flow problems and wave propagation in heterogeneous media has important applications in many engineering areas. However, numerical solutions on the fine grid are often prohibitively expensive, and multiscale model reduction te chniques are introduced to efficiently solve for an accurate approximation on the coarse grid. In this paper, we propose an energy minimization based multiscale model reduction approach in the discontinuous Galerkin discretization setting. The main idea of the method is to extract the non-decaying component in the high conductivity regions by identifying dominant modes with small eigenvalues of local spectral problems, and define multiscale basis functions in coarse oversampled regions by constraint energy minimization problems. The multiscale basis functions are in general discontinuous on the coarse grid and coupled by interior penalty discontinuous Galerkin formulation. The minimal degree of freedom in representing high-contrast features is achieved through the design of local spectral problems, which provides the most compressed local multiscale space. We analyze the method for solving Darcy flow problem and show that the convergence is linear in coarse mesh size and independent of the contrast, provided that the oversampling size is appropriately chosen. Numerical results are presented to show the performance of the method for simulation on flow problem and wave propagation in high-contrast heterogeneous media.
In this paper we design and analyze a uniform preconditioner for a class of high order Discontinuous Galerkin schemes. The preconditioner is based on a space splitting involving the high order conforming subspace and results from the interpretation o f the problem as a nearly-singular problem. We show that the proposed preconditioner exhibits spectral bounds that are uniform with respect to the discretization parameters, i.e., the mesh size, the polynomial degree and the penalization coefficient. The theoretical estimates obtained are supported by several numerical simulations.
We deal with the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) preconditioner for elliptic problems discretized by the virtual element method (VEM). We extend the result of [22] to the three dimensional case. We prove polylogarithm ic condition number bounds, independent of the number of subdomains, the mesh size, and jumps in the diffusion coefficients. Numerical experiments validate the theory
In this work, we propose a local multiscale model reduction approach for the time-domain scalar wave equation in a heterogenous media. A fine mesh is used to capture the heterogeneities of the coefficient field, and the equation is solved globally on a coarse mesh in the discontinuous Galerkin discretization setting. The main idea of the model reduction approach is to extract dominant modes in local spectral problems for representation of important features, construct multiscale basis functions in coarse oversampled regions by constraint energy minimization problems, and perform a Petrov-Galerkin projection and a symmetrization onto the coarse grid. The method is expicit and energy conserving, and exhibits both coarse-mesh and spectral convergence, provided that the oversampling size is appropriately chosen. We study the stability and convergence of our method. We also present numerical results on the Marmousi model in order to test the performance of the method and verify the theoretical results.
In this paper, we develop a new mass conservative numerical scheme for the simulations of a class of fluid-structure interaction problems. We will use the immersed boundary method to model the fluid-structure interaction, while the fluid flow is gove rned by the incompressible Navier-Stokes equations. The immersed boundary method is proven to be a successful scheme to model fluid-structure interactions. To ensure mass conservation, we will use the staggered discontinuous Galerkin method to discretize the incompressible Navier-Stokes equations. The staggered discontinuous Galerkin method is able to preserve the skew-symmetry of the convection term. In addition, by using a local postprocessing technique, the weakly divergence free velocity can be used to compute a new postprocessed velocity, which is exactly divergence free and has a superconvergence property. This strongly divergence free velocity field is the key to the mass conservation. Furthermore, energy stability is improved by the skew-symmetric discretization of the convection term. We will present several numerical results to show the performance of the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا