ترغب بنشر مسار تعليمي؟ اضغط هنا

We report on recent optical observations of the stellar and the nebular remnants of 22 southern post-novae. In this study, for each of our targets, we obtained and analysed long-slit spectra in the spectral range 3500-6600 A and in H$alpha$+NII narro w-band images. The changes in the emission lines equivalent widths with the time since the outburst agree with earlier published results of other authors. We estimated an average value $alpha$=2.37 for the exponent of the power law fitted to the post-novae continua. Our observations clearly show the two-component structure of the V842 Cen expanding nebulae, owing to the different velocities of the ejected matter. We discovered an expanding shell around V382 Vel with an outer diameter of about 12 arcsec.
Asteroid spectroscopy reflects surface mineralogy. There are few thousand asteroids whose surfaces have been observed spectrally. Determining the surface properties of those objects is important for many practical and scientific applications, such as for example developing impact deflection strategies or studying history and evolution of the Solar System and planet formation. The aim of this study is to develop a pre-selection method that can be utilized in searching for asteroids of any taxonomic complex. The method could then be utilized im multiple applications such as searching for the missing V-types or looking for primitive asteroids. We used the Bayes Naive Classifier combined with observations obtained in the course of the Sloan Digital Sky Survey and the Wide-field Infrared Survey Explorer surveys as well as a database of asteroid phase curves for asteroids with known taxonomic type. Using the new classification method we have selected a number of possible V-type candidates. Some of the candidates were than spectrally observed at the Nordic Optical Telescope and South African Large Telescope. We have developed and tested the new pre-selection method. We found three asteroids in the mid/outer Main Belt that are likely of differentiated type. Near-Infrared are still required to confirm this discovery. Similarly to other studies we found that V-type candidates cluster around the Vesta family and are rare in the mid/oter Main Belt. The new method shows that even largely explored large databases combined together could still be further exploited in for example solving the missing dunite problem.
Two observational campaigns were carried out during the eclipses of EE Cep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depth and durations of the eclipses. Multicolour photometric data and spectroscopic observations at both low and high resolution were collected. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure. We considered the possibility of disk precession. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a bump that is very clear in all the UBVRI light curves. Variations in the spectral line profiles seem to be recurrent during each cycle. NaI lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the H_alpha emission. These observations confirm that the eclipsing object in EE Cep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EE Cep; (ii) our explanation of the bump observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and (iii) our suggested period of the disk precession (~11-12 P_orb) and predicted depth of about 2 mag the forthcoming eclipse in 2014.
We present an analysis of high resolution spectral observations of the symbiotic star StHa 190. A 30 days period has been derived from radial velocities of the G-type absorption lines and the HeII 4686A emission line. The main aim of this work was to look for explanation of the very wide absorption lines of the yellow giant. The very low mass function obtained from the absorption lines radial velocities suggests that the observed changes probably do not corespond to the orbital motion of this star.
The sudden lengthening of orbital period of VV Cep eclipsing binary by about 1% was observed in the last epoch. The mass transfer and/or mass loss are most possible explanations of this event. The photometric behaviour of AZ Cas, the cousin of VV Cep , suggests that the accretion can occur and could be important in this system, too.
We present photometric and spectral observation for four novae: V2362 Cyg, V2467 Cyg, V458 Vul, V2491 Cyg. All objects belongs to the fast novae class. For these stars we observed different departures from a typical behavior in the light curve and spectrum.
Nova V2491 Cyg was discovered on April 10.72 UT 2008 (Nakano, 2008). Here we present spectrophotometric premises that V2491 Cyg can be a good candidate for recurrent nova (RNe). Its properties are compared to five well known RNe with red dwarf second aries (U Sco, V394 Cra, T Pyx, CI Aql, IM Nor) and recently confirmed as recurrent nova V2487 Oph (Pagnotta et al.,2008). Photometric $U, B, V, R_C, I_C$ and moderate resolution (R$sim 1500$) spectral observations of V2491 Cyg were carried out in the Torun Observatory (Poland) between April 14 and May 20 2008.
280 - C. Ga{l}an 2010
We present our multicolour photometric data of the primary and secondary eclipses of OW Gem that took place in 1995, 2002, and 2006, as well as the new radial-velocity data collected since 1993 by R. F. Griffin and A. Duquennoy. The Wilson-Devinney c ode was used for the simultaneous solution of both photometric and spectroscopic data. A complete set of orbital and physical parameters of the components was obtained. The pair of values, eccentricity e=0.5286 and argument of periastron omega=140.73 degree, give better compatibility of the moment of the secondary minimum with the observations compared to previous estimates.
We present UBVRI photometry of three symbiotic stars ZZ CMi, TX CVn and AG Peg carried out from 1997 to 2008 in Piwnice Observatory near Torun. To search orbital periods of these stars Fourier analysis was used. For two of them, TX CVn and AG Peg, we have confirmed the earlier known periods. For ZZ CMi we found a relatively short period 218.59 days. Assuming, that the orbital period is twice longer (P=437.18 days), the double sine wave in the light curve can be interpreted by ellipsoidal effect.
The photometric and spectroscopic observational campaign organized for the 2008/9 eclipse of EE Cep revealed features, which indicate that the eclipsing disk in the EE Cep system has a multi-ring structure. We suggest that the gaps in the disk can be related to the possible planet formation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا