ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-ring structure of the eclipsing disk in EE Cep - possible planets?

55   0   0.0 ( 0 )
 نشر من قبل Cezary Galan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photometric and spectroscopic observational campaign organized for the 2008/9 eclipse of EE Cep revealed features, which indicate that the eclipsing disk in the EE Cep system has a multi-ring structure. We suggest that the gaps in the disk can be related to the possible planet formation.

قيم البحث

اقرأ أيضاً

Context. EE Cep is one of few eclipsing binary systems with a dark, dusty disk around an invisible object similar to {epsilon} Aur. The system is characterized by grey and asymmetric eclipses every 5.6 yr, with a significant variation in their photom etric depth, ranging from ~ 0 m .5 to ~ 2 m .0. Aims. The main aim of the observational campaign of the EE Cep eclipse in 2014 was to test the model of disk precession (Galan et al. 2012). We expected that this eclipse would be one of the deepest with a depth of ~ 2 m .0. Methods. We collected multicolor observations from almost 30 instruments located in Europe and North America. This photometric data covers 243 nights during and around the eclipse. We also analyse the low- and high-resolution spectra from several instruments. Results. The eclipse was shallow with a depth of 0 m .71 in V-band. The multicolor photometry illustrates small color changes during the eclipse with a total amplitude of order ~ +0 m . 15 in B-I color index. The linear ephemeris for this system is updated by including new times of minima, measured from the three most recent eclipses at epochs E = 9, 10 and 11. New spectroscopic observations were acquired, covering orbital phases around the eclipse, which were not observed in the past and increased the data sample, filling some gaps and giving a better insight into the evolution of the H {alpha} and NaI spectral line profiles during the primary eclipse. Conclusions. The eclipse of EE Cep in 2014 was shallower than expected 0 m .71 instead of ~ 2 m . 0. This means that our model of disk precession needs revision.
We present an analysis of eclipse timings of the post-common envelope binary NSVS 14256825, which is composed of an sdOB star and a dM star in a close orbit (P_{orb} = 0.110374 days). High-speed photometry of this system was performed between July, 2 010 and August, 2012. Ten new mid-eclipse times were analyzed together with all available eclipse times in the literature. We revisited the (O-C) diagram using a linear ephemeris and verified a clear orbital period variation. On the assumption that these orbital period variations are caused by light travel time effects, the (O-C) diagram can be explained by the presence of two circumbinary bodies, even though this explanation requires a longer baseline of observations to be fully tested. The orbital periods of the best solution would be P_c ~ 3.5 years and P_d ~ 6.9 years. The corresponding projected semi-major axes would be a_c i_c ~ 1.9 AU and a_d i_d ~ 2.9 AU. The masses of the external bodies would be M_c ~ 2.9 M_{Jupiter} and M_d ~ 8.1 M_{Jupiter}, if we assume their orbits are coplanar with the close binary. Therefore NSVS 14256825 might be composed of a close binary with two circumbinary planets, though the orbital period variations is still open to other interpretations.
V453 Cyg is an eclipsing binary containing 14 Msun and 11 Msun stars in an eccentric short-period orbit. We have discovered $beta$ Cep-type pulsations in this system using TESS data. We identify seven significant pulsation frequencies, between 2.37 a nd 10.51 d$^{-1}$, in the primary star. These include six frequencies which are separated by yet significantly offset from harmonics of the orbital frequency, indicating they are tidally-perturbed modes. We have determined the physical properties of the system to high precision: V453 Cyg A is the first $beta$ Cep pulsator with a precise mass measurement. The system is a vital tracer of the physical processes that govern the evolution of massive single and binary stars.
The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ~1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.
360 - Xiang Gao , Kai Li , Xing Gao 2021
The first photometric analysis of V811 Cep was carried out. The first complete light curves of V, R and I bands are given. The analysis was carried out by Wilson-Devinney (W-D) program, and the results show that V811 Cep is a median-contact binary ($ f=33.9(pm4.9)%$) with a mass ratio of 0.285. It is a W-subtype contact binary, that is, the component with less mass is hotter than the component with more mass, and the light curves are asymmetric (OConnell effect), which can be explained by the existence of a hot spot on the component with less mass. The orbital inclination is $i=88.3^{circ}$, indicating that it is a totally eclipsing binary, so the parameters obtained are reliable. Through the O-C analyzing, it is found that the orbital period decreases at the rate of $dot{P}=-3.90(pm0.06)times 10^{-7}d cdot yr^{-1}$, which indicates that the mass transfer occurs from the more massive component to the less massive one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا