ترغب بنشر مسار تعليمي؟ اضغط هنا

Folded single layer graphene forms a system of two decoupled monolayers being only a few Angstroms apart. Using magnetotransport measurements we investigate the electronic properties of the two layers conducting in parallel. We show a method to obtai n the mobilities for the individual layers despite them being jointly contacted. The mobilities in the upper layer are significantly larger than in the bottom one indicating weaker substrate influence. This is confirmed by larger transport and quantum scattering times in the top layer. Analyzing the temperature dependence of the Shubnikov-de Haas oscillations effective masses and corresponding Fermi velocities are obtained yielding reduced values down to 66 percent in comparison to monolayers.
The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of g raphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nano-meter scale separation between them.
120 - P. Barthold , T. Luedtke , 2008
An atomic force microscope is used to structure a film of multilayer graphene. The resistance of the sample was measured in-situ during nanomachining a narrow trench. We found a reversible behavior in the electrical resistance which we attribute to t he movement of dislocations. After several attempts also permanent changes are observed. Two theoretical approaches are presented to approximate the measured resistance.
An atomic force microscope is used to structure a film of multilayer graphene. The resistance of the sample was measured in-situ during nanomachining narrow trenches. We found a reversible behavior in the electrical resistance which we attribute to t he movement of dislocations. After several attempts also permanent changes are observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا