ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanomachining of mesoscopic graphite

36   0   0.0 ( 0 )
 نشر من قبل Patrick Barthold
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An atomic force microscope is used to structure a film of multilayer graphene. The resistance of the sample was measured in-situ during nanomachining narrow trenches. We found a reversible behavior in the electrical resistance which we attribute to the movement of dislocations. After several attempts also permanent changes are observed.

قيم البحث

اقرأ أيضاً

122 - P. Barthold , T. Luedtke , 2008
An atomic force microscope is used to structure a film of multilayer graphene. The resistance of the sample was measured in-situ during nanomachining a narrow trench. We found a reversible behavior in the electrical resistance which we attribute to t he movement of dislocations. After several attempts also permanent changes are observed. Two theoretical approaches are presented to approximate the measured resistance.
In the classical Josephson effect the phase difference across the junction is well defined, and the supercurrent is reduced only weakly by phase diffusion. For mesoscopic junctions with small capacitance the phase undergoes large quantum fluctuations , and the current is also decreased by Coulomb blockade effects. We discuss the behavior of the current-voltage characteristics in a large range of parameters comprising the phase diffusion regime with coherent Josephson current as well as the supercurrent peak due to incoherent Cooper pair tunneling in the Coulomb blockade regime.
The effect of external static charging of graphene and its flakes are investigated by using first-principles calculations. While the Fermi level of negatively charged graphene rises and then is quickly pinned by the parabolic, nearly free electron li ke bands, it moves down readily by removal of electrons from graphene. Excess charges accumulate mainly at both surfaces of graphite slab. Even more remarkable is that Coulomb repulsion exfoliates the graphene layers from both surfaces of positively charged graphite slab. The energy level structure, binding energy and and spin-polarization of specific adatoms adsorbed to a graphene flake can be monitored by charging.
Few layer graphene (FLG) has been recently intensively investigated for its variable electronic properties defined by a local atomic arrangement. While the most natural layers arrangement in FLG is ABA (Bernal) stacking, a metastable ABC (rhombohedra l) stacking characterized by a relatively high energy barrier can also occur. When both stacking occur in the same FLG device this results in in-plane heterostructure with a domain wall (DW). We show that ABC stacking in FLG can be controllably and locally turned into ABA stacking by two following approaches. In the first approach, Joule heating was introduced and the transition was characterized by 2D-peak Raman spectra at a submicron spatial resolution. The observed transition was initiated at a small region and then the DW controllably shifted until the entire device became ABA stacked. In the second approach, the transition was achieved by illuminating the ABC region with a train of laser pulses of 790 nm wavelength, while the transition was visualized by transmission electron microscopy in both diffraction and dark field modes. Also, with this approach, a DW was visualized in the dark-field imaging mode, at a nanoscale spatial resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا