ترغب بنشر مسار تعليمي؟ اضغط هنا

Mobilities and Scattering Times in Decoupled Graphene Monolayers

113   0   0.0 ( 0 )
 نشر من قبل Hennrik Schmidt
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Folded single layer graphene forms a system of two decoupled monolayers being only a few Angstroms apart. Using magnetotransport measurements we investigate the electronic properties of the two layers conducting in parallel. We show a method to obtain the mobilities for the individual layers despite them being jointly contacted. The mobilities in the upper layer are significantly larger than in the bottom one indicating weaker substrate influence. This is confirmed by larger transport and quantum scattering times in the top layer. Analyzing the temperature dependence of the Shubnikov-de Haas oscillations effective masses and corresponding Fermi velocities are obtained yielding reduced values down to 66 percent in comparison to monolayers.

قيم البحث

اقرأ أيضاً

The use of two truly two-dimensional gapless semiconductors, monolayer and bilayer graphene, as current-carrying components in field-effect transistors (FET) gives access to new types of nanoelectronic devices. Here, we report on the development of g raphene-based FETs containing two decoupled graphene monolayers manufactured from a single one folded during the exfoliation process. The transport characteristics of these newly-developed devices differ markedly from those manufactured from a single-crystal bilayer. By analyzing Shubnikov-de Haas oscillations, we demonstrate the possibility to independently control the carrier densities in both layers using top and bottom gates, despite there being only a nano-meter scale separation between them.
The electronic transport properties of monolayer graphene have been studied before and after the deposition of a dilute coating of tungsten adatoms on the surface. For coverages up to 2.5% of a monolayer, we find tungsten adatoms simultaneously donat e electrons to graphene and reduce the carrier mobility, impacting the zero- and finite-field transport properties. Two independent transport analyses suggest the adatoms lie nearly 1 nm above the surface. The presence of adatoms is also seen to impact the low field magnetoresistance, altering the signatures of weak localization.
Both transport $tau_{tr}$ and elastic scattering times $tau_{e}$ are experimentally determined from the carrier density dependence of the magnetoconductance of monolayer and bilayer graphene. Both times and their dependences in carrier density are fo und to be very different in the monolayer and the bilayer. However their ratio $tau_{tr}/tau_{e} $is found to be of the order of $1.5 $ in both systems and independent of the carrier density. These measurements give insight on the nature (neutral or charged) and spatial extent of the scattering centers. Comparison with theoretical predictions yields that the main scattering mechanism in our graphene samples could be due to strong scatterers of short range, inducing resonant scattering, a likely candidate being vacancies.
The nanofriction of Xe monolayers deposited on graphene was explored with a quartz crystal microbalance (QCM) at temperatures between 25 and 50 K. Graphene was grown by chemical vapor deposition and transferred to the QCM electrodes with a polymer st amp. At low temperatures, the Xe monolayers are fully pinned to the graphene surface. Above 30 K, the Xe film slides and the depinning onset coverage beyond which the film starts sliding decreases with temperature. Similar measurements repeated on bare gold show an enhanced slippage of the Xe films and a decrease of the depinning temperature below 25 K. Nanofriction measurements of krypton and nitrogen confirm this scenario.This thermolubric behavior is explained in terms of a recent theory of the size dependence of static friction between adsorbed islands and crystalline substrates.
We demonstrate how self-assembled monolayers of aromatic molecules on copper substrates can be converted into high-quality single-layer graphene using low-energy electron irradiation and subsequent annealing. We characterize this two-dimensional soli d state transformation on the atomic scale and study the physical and chemical properties of the formed graphene sheets by complementary microscopic and spectroscopic techniques and by electrical transport measurements. As substrates we successfully use Cu(111) single crystals and the technologically relevant polycrystalline copper foils.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا