ترغب بنشر مسار تعليمي؟ اضغط هنا

The magneto-ionic structures of the interstellar medium of the Milky Way and the intergalactic medium are still poorly understood, especially at distances larger than a few kiloparsecs from the Sun. The three-dimensional (3D) structure of the Galacti c magnetic field and electron density distribution may be probed through observations of radio pulsars, primarily owing to their compact nature, high velocities, and highly-polarized short-duration radio pulses. Phase 1 of the SKA, i.e. SKA1, will increase the known pulsar population by an order of magnitude, and the full SKA, i.e. SKA2, will discover pulsars in the most distant regions of our Galaxy. SKA1-VLBI will produce model-independent distances to a large number of pulsars, and wide-band polarization observations by SKA1-LOW and SKA1-MID will yield high precision dispersion measure, scattering measure, and rotation measure estimates along thousands of lines of sight. When combined, these observations will enable detailed tomography of the large-scale magneto-ionic structure of both the Galactic disk and the Galactic halo. Turbulence in the interstellar medium can be studied through the variations of these observables and the dynamic spectra of pulsar flux densities. SKA1-LOW and SKA1-MID will monitor interstellar weather and produce sensitive dynamic and secondary spectra of pulsar scintillation, which can be used to make speckle images of the ISM, study turbulence on scales between ~10^8 and ~10^13 m, and probe pulsar emission regions on scales down to $sim$10 km. In addition, extragalactic pulsars or fast radio bursts to be discovered by SKA1 and SKA2 can be used to probe the electron density distribution and magnetic fields in the intergalactic medium beyond the Milky Way.
We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, c an observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.
A concept for a new space-based cosmology mission called the Dark Ages Radio Explore (DARE) is presented in this paper. DAREs science objectives include (1) When did the first stars form? (2) When did the first accreting black holes form? (3) When di d Reionization begin? (4) What surprises does the end of the Dark Ages hold (e.g., Dark Matter decay)? DARE will use the highly-redshifted hyperfine 21-cm transition from neutral hydrogen to track the formation of the first luminous objects by their impact on the intergalactic medium during the end of the Dark Ages and during Cosmic Dawn (redshifts z=11-35). It will measure the sky-averaged spin temperature of neutral hydrogen at the unexplored epoch 80-420 million years after the Big Bang, providing the first evidence of the earliest stars and galaxies to illuminate the cosmos and testing our models of galaxy formation. DAREs approach is to measure the expected spectral features in the sky-averaged, redshifted 21-cm signal over a radio bandpass of 40-120 MHz. DARE orbits the Moon for a mission lifetime of 3 years and takes data above the lunar farside, the only location in the inner solar system proven to be free of human-generated radio frequency interference and any significant ionosphere. The science instrument is composed of a three-element radiometer, including electrically-short, tapered, bi-conical dipole antennas, a receiver, and a digital spectrometer. The smooth frequency response of the antennas and the differential spectral calibration approach using a Markov Chain Monte Carlo technique will be applied to detect the weak cosmic 21-cm signal in the presence of the intense solar system and Galactic foreground emissions.
363 - T. J. W. Lazio 2010
This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the sit e of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.
44 - T. J. W. Lazio 2007
We analyze a sample of 58 multi-wavelength, Very Long Baseline Array observations of active galactic nuclei (AGN) to determine their scattering properties. Approximately 75% of the sample consists of AGN that exhibit centimeter-wavelength intraday va riability (interstellar scintillation) while the other 25% do not show intraday variability. We find that interstellar scattering is measurable for most of these AGN, and the typical broadening diameter is 2 mas at 1 GHz. We find that the scintillating AGN are typically at lower Galactic latitudes than the non-scintillating AGN, consistent with the scenario that intraday variability is a propagation effect from the Galactic interstellar medium. The magnitude of the inferred interstellar broadening measured toward the scintillating AGN, when scaled to higher frequencies, is comparable to the diameters inferred from analyses of the light curves for the more well-known intraday variable sources. However, we find no difference in the amount of scattering measured toward the scintillating versus non-scintillating AGN. A consistent picture is one in which the scintillation results from localized regions (clumps) distributed throughout the Galactic disk, but which individually make little contribution to the angular broadening. Of the 58 AGN observed, 37 (64%) have measured redshifts. At best, a marginal trend is found for scintillating (non-scintillating) AGN to have smaller (larger) angular diameters at higher redshifts. We also use our observations to try to constrain the possibility of intergalactic scattering. While broadly consistent with the scenario of a highly turbulent intergalactic medium, our observations do not place significant constraints on its properties.
The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather, an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا