ترغب بنشر مسار تعليمي؟ اضغط هنا

Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

414   0   0.0 ( 0 )
 نشر من قبل Joseph Lazio
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. J. W. Lazio




اسأل ChatGPT حول البحث

This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.



قيم البحث

اقرأ أيضاً

The recent hard X-ray surveys performed by INTEGRAL and Swift have started to reveal the demographics of compact sources including Super-Massive Black Holes hosted in AGNs and have proven invaluable in tracking explosive events as the death of massiv e stars revealed by Gamma-Ray Bursts up to cosmological distances. Whereas the observations have contributed significantly to our understanding of the sources populations in the Local Universe, it has also become evident that revealing the processes that drive the birth and evolution of the first massive stars and galaxies would have required a further big step in both sensitivity and capability to study transient phenomena since their very beginning and covering different wavebands simultaneously. Therefore, after its decennial history as a proposed hard X-ray survey mission, EXIST has now turned into a new, more advanced concept with three instruments on board covering the IR/optical and X-ray/soft gamma-ray bands. The EXIST new design (Grindlay 2009a) is therefore much improved in its capability for prompt study of GRBs (with autonomous determination of the redshift for many of them) and broadband spectral studies of SMBHs and transients in the high energy band from 0.1 to several hundred keV, with sensitive optical/NIR and soft X-ray identifications and followup studies.
The Long Wavelength Array Software Library (LSL) is a Python module that provides a collection of utilities to analyze and export data collected at the first station of the Long Wavelength Array, LWA1. Due to the nature of the data format and large-N ($gtrsim$100 inputs) challenges faced by the LWA, currently available software packages are not suited to process the data. Using tools provided by LSL, observers can read in the raw LWA1 data, synthesize a filter bank, and apply incoherent de-dispersion to the data. The extensible nature of LSL also makes it an ideal tool for building data analysis pipelines and applying the methods to other low frequency arrays.
170 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy inst itutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
116 - Patricia Henning 2010
The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Upon completion, LWA will consist of 53 phased array stations distributed over a region about 400 km in diameter in the state of N ew Mexico. Each station will consist of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5 sigma, 8 MHz, 2 polarizations, 1 hr, zenith) in 20-80 MHz; with resolution and field of view of (8, 8 deg) and (2,2 deg) at 20 MHz and 80 MHz, respectively. All 256 dipole antennas are in place for the first station of the LWA (called LWA-1), and commissioning activities are well underway. The station is located near the core of the EVLA, and is expected to be fully operational in early 2011.
The future of radio astronomy will require instruments with large collecting areas for higher sensitivity, wide fields of view for faster survey speeds, and efficient computing and data rates relative to current capabilities. We describe the first su ccessful deployment of the E-field Parallel Imaging Correlator (EPIC) on the LWA station in Sevilleta, New Mexico, USA (LWA-SV). EPIC is a solution to the computational problem of large interferometers. By gridding and spatially Fourier transforming channelised electric fields from the antennas in real-time, EPIC removes the explicit cross multiplication of all pairs of antenna voltages to synthesize an aperture, reducing the computational scaling from $mathcal{O}(n_a^2)$ to $mathcal{O}(n_g log_2 n_g)$, where $n_a$ is the number of antennas and $n_g$ is the number of grid points. Not only does this save computational costs for dense arrays but it produces very high time resolution images in real time. The GPU-based implementation uses existing LWA-SV hardware and the high performance streaming framework, Bifrost. We examine the practical details of the EPIC deployment and verify the imaging performance by detecting a meteor impact on the atmosphere using continuous all-sky imaging at 50 ms time resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا