ترغب بنشر مسار تعليمي؟ اضغط هنا

High-precision Measurements of Ionospheric TEC Gradients with the Very Large Array VHF System

179   0   0.0 ( 0 )
 نشر من قبل Joe Helmboldt
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used a relatively long, contiguous VHF observation of a bright cosmic radio source (Cygnus A) with the Very Large Array (VLA) to demonstrate the capability of this instrument to study the ionosphere. This interferometer, and others like it, can observe ionospheric total electron content (TEC) fluctuations on a much wider range of scales than is possible with many other instruments. We have shown that with a bright source, the VLA can measure differential TEC values between pairs of antennas (delta-TEC) with an precision of 0.0003 TECU. Here, we detail the data reduction and processing techniques used to achieve this level of precision. In addition, we demonstrate techniques for exploiting these high-precision delta-TEC measurements to compute the TEC gradient observed by the array as well as small-scale fluctuations within the TEC gradient surface. A companion paper details specialized spectral analysis techniques used to characterize the properties of wave-like fluctuations within this data.



قيم البحث

اقرأ أيضاً

117 - J. F. Helmboldt , W. M. Lane , 2012
The results of a climatological study of ionospheric disturbances derived from observations of cosmic sources from the Very Large Array (VLA) Low-frequency Sky Survey (VLSS) are presented. We have used the ionospheric corrections applied to the 74 MH z interferometric data within the VLSS imaging process to obtain fluctuation spectra for the total electron content (TEC) gradient on spatial scales from a few to hundreds of kilometers and temporal scales from less than one minute to nearly an hour. The observations sample nearly all times of day and all seasons. They also span latitudes and longitudes from 28 deg. N to 40 deg. N and 95 deg. W to 114 deg. W, respectively. We have binned and averaged the fluctuation spectra according to time of day, season, and geomagnetic (Kp index) and solar (F10.7) activity. These spectra provide a detailed, multi-scale account of seasonal and intraday variations in ionospheric activity with wavelike structures detected at wavelengths between about 35 and 250 km. In some cases, trends between spectral power and Kp index and/or F10.7 are also apparent. In addition, the VLSS observations allow for measurements of the turbulent power spectrum down to periods of 40 seconds (scales of ~0.4 km at the height of the E-region). While the level of turbulent activity does not appear to have a strong dependence on either Kp index or F10.7, it does appear to be more pronounced during the winter daytime, summer nighttime, and near dusk during the spring.
90 - J. F. Helmboldt 2012
The results of contemporaneous summer nighttime observations of midlatitude medium scale traveling ionospheric disturbances (MSTIDs) with the Very Large Array (VLA) in New Mexico and nearby ionosondes in Texas and Colorado are presented. Using 132, 2 0-minute observations, several instances of MSTIDs were detected, all having wavefronts aligned northwest to southeast and mostly propagating toward the southwest, consistent with previous studies of MSTIDs. However, some were also found to move toward the northeast. It was found that both classes of MSTIDs were only found when sporadic-E (Es) layers of moderate peak density (1.5<foEs<3 MHz) were present. Limited fbEs data from one ionosonde suggests that there was a significant amount of structure with the Es layers during observations when foEs>3 MHz that was not present when 1.5<foEs<3 MHz. No MSTIDs were observed either before midnight or when the F-region height was increasing at a relatively high rate, even when these Es layers were observed. Combining this result with AE indices which were relatively high at the time (an average of about 300 nT and maximum of nearly 700 nT), it is inferred that both the lack of MSTIDs and the increase in F-region height are due to substorm-induced electric fields. The northeastward-directed MSTIDs were strongest post-midnight during times when the F-region was observed to be collapsing relatively quickly. This implies that these two occurrences are related and likely both caused by rare shifts in F-region neutral wind direction from southwest to northwest.
Geomagnetically-aligned density structures with a range of sizes exist in the near-Earth plasma environment, including 10-100 km-wide VLF/HF wave-ducting structures. Their small diameters and modest density enhancements make them difficult to observe , and there is limited evidence for any of the several formation mechanisms proposed to date. We present a case study of an event on 26 August 2014 where a travelling ionospheric disturbance (TID) shortly precedes the formation of a complex collection of field-aligned ducts, using data obtained by the Murchison Widefield Array (MWA) radio telescope. Their spatiotemporal proximity leads us to suggest a causal interpretation. Geomagnetic conditions were quiet at the time, and no obvious triggers were noted. Growth of the structures proceeds rapidly, within 0.5 hr of the passage of the TID, attaining their peak prominence 1-2 hr later and persisting for several more hours until observations ended at local dawn. Analyses of the next two days show field-aligned structures to be preferentially detectable under quiet rather than active geomagnetic conditions. We used a raster scanning strategy facilitated by the speed of electronic beamforming to expand the quasi-instantaneous field of view of the MWA by a factor of three. These observations represent the broadest angular coverage of the ionosphere by a radio telescope to date.
The Naval Research Laboratory and the National Radio Astronomy Observatory completed implementation of a low frequency capability on the VLA at 73.8 MHz in 1998. This frequency band offers unprecedented sensitivity (~25 mJy/beam) and resolution (~25 arcsec) for low-frequency observations. We review the hardware, the calibration and imaging strategies, comparing them to those at higher frequencies, including aspects of interference excision and wide-field imaging. Ionospheric phase fluctuations pose the major difficulty in calibrating the array. Over restricted fields of view or at times of extremely quiescent ionospheric ``weather, an angle-invariant calibration strategy can be used. In this approach a single phase correction is devised for each antenna, typically via self-calibration. Over larger fields of view or at times of more normal ionospheric ``weather when the ionospheric isoplanatic patch size is smaller than the field of view, we adopt a field-based strategy in which the phase correction depends upon location within the field of view. This second calibration strategy was implemented by modeling the ionosphere above the array using Zernike polynomials. Images of 3C sources of moderate strength are provided as examples of routine, angle-invariant calibration and imaging. Flux density measurements indicate that the 74 MHz flux scale at the VLA is stable to a few percent, and tied to the Baars et al. value of Cygnus A at the 5 percent level. We also present an example of a wide-field image, devoid of bright objects and containing hundreds of weaker sources, constructed from the field-based calibration. We close with a summary of lessons the 74 MHz system offers as a model for new and developing low-frequency telescopes. (Abridged)
We present the results of a multi-scale analysis of TEC fluctuations using a roughly five-hour observation of the bright radio source Virgo A with the Very Large Array (VLA) at 74 MHz in its B configuration. Our analysis combines data sensitive to fi ne-scale structure (~10 km and <0.001 TECU in amplitude) along the line of sight to Virgo A as well as larger structures (hundreds of km) observed using several (~30) moderately bright sources in the field of view. The observations span a time period from midnight to dawn local time during 1 March 2001. Several groups of magnetic eastward directed (MED), wavelike disturbances were identified and determined to be located within the plasmasphere (2.1<L<2.9). We have also detected evidence of non-wavelike structures associated with these disturbances which are propagating roughly toward magnetic north. These likely represent a non-uniform density flow from the plasmasphere toward the nighttime ionosphere. AE and Kp indices and GPS TEC data indicate that during the observations, there were low levels of geomagnetic activity accompanied by somewhat localized depletions in ionospheric density. Thus, the observed plasmaspheric disturbance may be part of a flow triggered by these ionospheric depletions, likely associated with forcing from the lower atmosphere which is typically more prominent during quiet geomagnetic conditions. In addition, we have also observed several roughly westward directed and southeast directed waves located within the ionosphere. They are coincident in time with the plasmaspheric disturbances and may be related to the deposition of material onto the nighttime ionosphere.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا