ترغب بنشر مسار تعليمي؟ اضغط هنا

FF Cam is a variable star near the North celestial pole with hydrogen lines in emission. Its optical variability of ~0.3 mag was discovered by HIPPARCOS. The spectral type assigned to the star in SIMBAD is B9, but its position coincides with a ROSAT X-ray source. This suggests the presence of a high-temperature region in the system that could originate at or near a companion object. We undertook a spectroscopic monitoring of FF Cam since the beginning of 2012 and found an extremely variable H-alpha line profile as well as periodically variable radial velocities of numerous absorption lines. The main conclusion from our study is that FF Cam is a binary system with an orbital period of 7.785 days, a B-type primary and a K-type secondary component. We discuss the spectral features, their variations, and the nature of FF Cam.
100 - B. Mauclaire , C. Buil , T. Garrel 2012
We present and analyze epsilon Aurigae data concerning the evolution of the H$alpha$ line on the occasion of the 2009 International observation campaign launched to cover the eclipse of this object. About 250 high resolution spectra of the H$alpha$ l ine were obtained by amateur covering the three years around eclipse. We visually inspect the dynamical spectrum constructed from the data and analyze the evolution with time of the radial velocity and of EW (Equivalent Width) vs V mag. The spectroscopic data reveal many details which confirm the complexity of the Aurigae system. The object is far from being understood. In particular, according to our measurements, the eclipse duration has been underestimated and key dates were defined. A complete analysis of details revealed by our data would require much time and effort. Observers are encouraged to continue monitoring the H$alpha$ line out of eclipse in the hope that it will provide further important information.
The results of a spectroscopic survey of epsilon Aurigae during eclipse using a network of small telescopes are presented. The spectra have a resolution of 0.35 to 0.65{AA} and cover the period 2008 to 2012 with a typical interval of 4 days during ec lipse. This paper specifically covers variations in the K I 7699{AA}, Na D and Mg II 4481{AA} lines. Absorption started increasing in the KI 7699{AA} line 3 months before the eclipse began photometrically and had not returned to pre eclipse levels by the end of the survey March 2012, 7 months after the brightness had returned to normal outside eclipse levels. The contribution of the eclipsing object to the KI 7699{AA} line has been isolated and the data show the excess absorption increasing and decreasing in a series of steps during ingress and egress. This is interpreted as an indication of structure within the eclipsing object. The F star is totally obscured by the eclipsing object at the Na D wavelength during eclipse. The radial velocity of the F star and the mean and maximum radial velocity of the eclipsing material in front of the F star at any given time have been isolated and tracked throughout the eclipse. The quasi-periodic variations seen in the F star RV outside eclipse continued during the eclipse. It is hoped that these results can be used to constrain proposed models of the system and its components.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا