ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of the mysterious Be system FF Cam

64   0   0.0 ( 0 )
 نشر من قبل Anatoly Miroshnichenko
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

FF Cam is a variable star near the North celestial pole with hydrogen lines in emission. Its optical variability of ~0.3 mag was discovered by HIPPARCOS. The spectral type assigned to the star in SIMBAD is B9, but its position coincides with a ROSAT X-ray source. This suggests the presence of a high-temperature region in the system that could originate at or near a companion object. We undertook a spectroscopic monitoring of FF Cam since the beginning of 2012 and found an extremely variable H-alpha line profile as well as periodically variable radial velocities of numerous absorption lines. The main conclusion from our study is that FF Cam is a binary system with an orbital period of 7.785 days, a B-type primary and a K-type secondary component. We discuss the spectral features, their variations, and the nature of FF Cam.


قيم البحث

اقرأ أيضاً

The determination of pulsation mode and distance for field Cepheids is a complicated problem best resolved by a luminosity estimate. For illustration a technique based on spectroscopic luminosity discrimination is applied to the 4.47d s-Cepheid FF Aq l. Line ratios in high dispersion spectra of the variable yield values of <Mv>=-3.40+-0.02 s.e.(+-0.04 s.d.), average effective temperature Teff=6195+-24 K, and intrinsic color (<B>-<V>)o = +0.506+-0.007, corresponding to a reddening of E(B-V)=0.25+-0.01, or E(B-V)(B0)=0.26+-0.01. The skewed light curve, intrinsic color, and luminosity of FF Aql are consistent with fundamental mode pulsation for a small amplitude classical Cepheid on the blue side of the instability strip, not a sinusoidal pulsator. A distance of 413+-14 pc is estimated from the Cepheids angular diameter in conjunction with a mean radius of <R>=39.0+-0.7 Rsun inferred from its luminosity and effective temperature. The dust extinction towards FF Aql is described by a ratio of total-to-selective extinction of Rv=Av/E(B-V)=3.16+-0.34 according to the stars apparent distance modulus.
We report optical spectroscopic observations of the Be/gamma-ray binaries LSI+61303, MWC 148 and MWC 656. The peak separation and equivalent widths of prominent emission lines (H-alpha, H-beta, H-gamma, HeI, and FeII) are measured. We estimated the c ircumstellar disc size, compared it with separation between the components, and discussed the disc truncation. We find that in LSI+61303 the compact object comes into contact with the outer parts of the circumstellar disc at periastron, in MWC 148 the compact object goes deeply into the disc during the periastron passage, and in MWC 656 the black hole is accreting from the outer parts of the circumstellar disc along the entire orbit. The interstellar extinction was estimated using interstellar lines. The rotation of the mass donors appears to be similar to the rotation of the mass donors in Be/X-ray binaries. We suggest that X-ray/optical periodicity of about 1 day deserves to be searched for.
We present a study on stellar population and kinematics of globular clusters (GCs) in the peculiar galaxy M85. We obtain optical spectra of 89 GCs at 8 kpc $< R <$ 160 kpc using the MMT/Hectospec. We divide them into three groups, blue/green/red GCs (B/G/RGCs), with their $(g-i)_0$ colors. All GC subpopulations have mean ages of 10 Gyr, but showing differences in metallicities. The BGCs and RGCs are the most metal-poor ([Z/H] $sim -1.49$) and metal-rich ([Z/H] $sim -0.45$), respectively, and the GGCs are in between. We find that the inner GC system exhibits a strong overall rotation that is entirely due to a disk-like rotation of the RGC system. The BGC system shows little rotation. The GGCs show kinematic properties clearly distinct among the GC subpopulations, having higher mean velocities than the BGCs and RGCs and being aligned along the major axis of M85. This implies that the GGCs have an origin different from the other GC subpopulations. The rotation-corrected velocity dispersion of the RGC system is much lower than that of the BGC system, indicating the truncation of the red halo of M85. The BGCs have a flat velocity dispersion profile out to $R$ = 67 kpc, reflecting the dark matter extent of M85. Using the velocity dispersion of the BGC system, we estimate the dynamical mass of M85 to be $3.8 times 10^{12} M_{odot}$. We infer that M85 has undergone merging events lately, resulting in the peculiar kinematics of the GC system.
In this study, we analyze the emission lines of different species present in 118 Galactic field classical Be stars in the wavelength range of 3800 - 9000 AA. We re-estimated the extinction parameter (A$_V$) for our sample stars using the newly availa ble data from Gaia DR2 and suggest that it is important to consider A$_V$ while measuring the Balmer decrement (i.e. $D_{34}$ and $D_{54}$) values in classical Be stars. Subsequently, we estimated the Balmer decrement values for 105 program stars and found that $approx$ 20% of them show $D_{34}$ $geq$ 2.7, implying that their circumstellar disc are generally optically thick in nature. One program star, HD 60855 shows H$alpha$ in absorption -- indicative of discless phase. From our analysis, we found that in classical Be stars, H$alpha$ emission equivalent width values are mostly lower than 40 AA, which agrees with that present in literature. Moreover, we noticed that a threshold value of $sim$ 10 AA~of H$alpha$ emission equivalent width is necessary for Fe{sc ii} emission to become visible. We also observed that emission line equivalent widths of H$alpha$, P14, Fe{sc ii} 5169 and O{sc i} 8446 AA~for our program stars tend to be more intense in earlier spectral types, peaking mostly near B1-B2. Furthermore, we explored various formation regions of Ca{sc ii} emission lines around the circumstellar disc of classical Be stars. We suggest the possibility that Ca{sc ii} triplet emission can originate either in the circumbinary disc or from the cooler outer regions of the disc, which might not be isothermal in nature.
We present a spectroscopic study of 150 Classical Be stars in 39 open clusters using medium resolution spectra in the wavelength range 3800 - 9000 AA. One-third of the sample (48 stars in 18 clusters) has been studied for the first time. All these ca ndidates were identified from an extensive survey of emission stars in young open clusters using slitless spectroscopy (Mathew et al. 2008). This large data set covers CBe stars of various spectral types and ages found in different cluster environments in largely northern open clusters, and is used to study the spectral characteristics of CBe stars in cluster environments. About 80% of CBe stars in our sample have H-alpha equivalent width in the range -1 to -40 AA. About 86% of the surveyed CBe stars show Fe II lines. The prominent Fe II lines in our surveyed stars are 4584, 5018, 5169, 5316, 6318, 6384, 7513 and 7712 AA. We have identified short and long-term line profile variability in some candidate stars through repeated observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا