ترغب بنشر مسار تعليمي؟ اضغط هنا

H$alpha$ spectral monitoring of epsilon Aurigae 2009-2011 eclipse

144   0   0.0 ( 0 )
 نشر من قبل Benjamin Mauclaire
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and analyze epsilon Aurigae data concerning the evolution of the H$alpha$ line on the occasion of the 2009 International observation campaign launched to cover the eclipse of this object. About 250 high resolution spectra of the H$alpha$ line were obtained by amateur covering the three years around eclipse. We visually inspect the dynamical spectrum constructed from the data and analyze the evolution with time of the radial velocity and of EW (Equivalent Width) vs V mag. The spectroscopic data reveal many details which confirm the complexity of the Aurigae system. The object is far from being understood. In particular, according to our measurements, the eclipse duration has been underestimated and key dates were defined. A complete analysis of details revealed by our data would require much time and effort. Observers are encouraged to continue monitoring the H$alpha$ line out of eclipse in the hope that it will provide further important information.



قيم البحث

اقرأ أيضاً

A series of 353 red electronic spectra obtained between 1994 and 2010, and of 171 UBV photometric observations of the 2010 eclipse, were analyzed in an effort to better understand the eclipsing binary eps Aur. The main results follow. (1) We attempte d to recover a spectrum of the companion by disentangling the observed spectra of the eps Aur binary failed, but we were able to disentangle the spectrum of telluric lines and obtain a mean spectrum of the F-type primary star. The latter was then compared to a grid of synthetic spectra for a number of plausible values of T(eff) and log(g), but a reasonably good match was not found. However, we conclude that the observed spectrum is that of a low-gravity star. (2) We examined changes in the complex H-alpha line profiles over the past 16 years, with particular emphasis on the 2009-2011 eclipse period, by subtracting a mean out-of-eclipse H-alpha profile (appropriately shifted in radial velocity) from the observed spectra. We find that the dark disk around the unseen companion has an extended atmosphere that manifests itself via blueshifted and redshifted H-alpha shell absorptions seen projected against the F star. Significantly, the H-alpha shell line first appeared three years before first contact of the optical eclipse when the system was not far past maximum separation. (3) Analyses of radial velocities and central intensities of several strong, unblended spectral lines, as well as UBV photometry, demonstrated that these observables showed apparent multiperiodic variability during eclipse. The dominant period of 66.21 was common to all the observables, but with different phase shifts between these variables. This result strongly supports our earlier suggestion that the photometric variability seen during eclipse is intrinsic to the F star, and therefore, the idea of a central brightening due to a hole in the disk should be abandoned.
The results of a spectroscopic survey of epsilon Aurigae during eclipse using a network of small telescopes are presented. The spectra have a resolution of 0.35 to 0.65{AA} and cover the period 2008 to 2012 with a typical interval of 4 days during ec lipse. This paper specifically covers variations in the K I 7699{AA}, Na D and Mg II 4481{AA} lines. Absorption started increasing in the KI 7699{AA} line 3 months before the eclipse began photometrically and had not returned to pre eclipse levels by the end of the survey March 2012, 7 months after the brightness had returned to normal outside eclipse levels. The contribution of the eclipsing object to the KI 7699{AA} line has been isolated and the data show the excess absorption increasing and decreasing in a series of steps during ingress and egress. This is interpreted as an indication of structure within the eclipsing object. The F star is totally obscured by the eclipsing object at the Na D wavelength during eclipse. The radial velocity of the F star and the mean and maximum radial velocity of the eclipsing material in front of the F star at any given time have been isolated and tracked throughout the eclipse. The quasi-periodic variations seen in the F star RV outside eclipse continued during the eclipse. It is hoped that these results can be used to constrain proposed models of the system and its components.
A single-epoch low resolution GHRS spectrum of the eclipsing binary Epsilon Aurigae was obtained while the secondary was orbiting towards eclipse by the primary. The detected emission line profiles have the appearance of double- peaked emission with a stronger red component at a radial velocity of +108 km/s, and a weaker blue emission bump at ca. -92 km/s. We compare these observational results with known orbital properties of the epsilon Aur binary system, and propose that the emission originates at the inner radius of the disk surrounding the enigmatic secondary. We interpret the kinematic data as a possible means to uncover the underlying stellar masses and we speculate about the binarys relationship to other high-mass models.
The radio galaxy 3C 84 is a representative of gamma-ray-bright misaligned active galactic nuclei (AGNs) and one of the best laboratories to study the radio properties of the sub-pc jet in connection with the gamma-ray emission. In order to identify p ossible radio counterparts of the gamma-ray emissions in 3C 84, we study the change in structure within the central 1 pc and the light curve of sub-pc-size components C1, C2, and C3. We search for any correlation between changes in the radio components and the gamma-ray flares by making use of VLBI and single dish data. Throughout the radio monitoring spanning over two GeV gamma-ray flares detected by the {it Fermi}-LAT and the MAGIC Cherenkov Telescope in the periods of 2009 April to May and 2010 June to August, total flux density in radio band increases on average. This flux increase mostly originates in C3. Although the gamma-ray flares span on the timescale of days to weeks, no clear correlation with the radio light curve on this timescale is found. Any new prominent components and change in morphology associated with the gamma-ray flares are not found on the VLBI images.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا