ترغب بنشر مسار تعليمي؟ اضغط هنا

With an aim of probing the physical conditions and excitation mechanisms of warm molecular gas in individual star-forming regions, we performed Herschel SPIRE FTS observations of 30 Doradus in the LMC. In our FTS observations, important FIR cooling l ines in the ISM, including CO J=4-3 to 13-12, [CI] 370 micron, and [NII] 205 micron, were clearly detected. In combination with ground-based CO data, we then constructed CO spectral line energy distributions (SLEDs) on 10 pc scales over a 60 pc x 60 pc area and found that the shape of the observed CO SLEDs considerably changes across 30 Doradus, e.g., the peak transition varies from J=6-5 to 10-9, while the slope characterized by the high-to-intermediate J ratio ranges from 0.4 to 1.8. To examine the source(s) of these variations in CO transitions, we analyzed the CO observations, along with [CII] 158 micron, [CI] 370 micron, [OI] 145 micron, H2 0-0 S(3), and FIR luminosity data, using state-of-the-art models of PDRs and shocks. Our detailed modeling showed that the observed CO emission likely originates from highly-compressed (thermal pressure ~ 1e7-1e9 K cm-3) clumps on 0.7-2 pc scales, which could be produced by either UV photons (UV radiation field ~ 1e3-1e5 Mathis fields) or low-velocity C-type shocks (pre-shock medium density ~ 1e4-1e6 cm-3 and shock velocity ~ 5-10 km s-1). Considering the stellar content in 30 Doradus, however, we tentatively excluded the stellar origin of CO excitation and concluded that low-velocity shocks driven by kpc scale processes (e.g., interaction between the Milky Way and the Magellanic Clouds) are likely the dominant source of heating for CO. The shocked CO-bright medium was then found to be warm (temperature ~ 100-500 K) and surrounded by a UV-regulated low pressure component (a few (1e4-1e5) K cm-3) that is bright in [CII] 158 micron, [CI] 370 micron, [OI] 145 micron, and FIR dust continuum emission.
Several dedicated surveys focusing on early-type galaxies (ETGs) reveal that significant fractions of them are detectable in all interstellar medium phases studied to date. We select ETGs from the Herschel Reference Survey that have both far-infrared Herschel and either HI or CO detection (or both). We derive their star formation rates (SFR), stellar masses and dust masses via modelling their spectral energy distributions. We combine these with literature information on their atomic and molecular gas properties, in order to relate their star formation, total gas mass and dust mass on global scales. The ETGs deviate from the dust mass-SFR relation and the Schmidt-Kennicutt relation that SDSS star forming galaxies define: compared to SDSS galaxies, ETGs have more dust at the same SFR, or less SFR at the same dust mass. When placing them in the M*-SFR plane, ETGs show a much lower specific SFR as compared to normal star-forming galaxies. ETGs show a large scatter compared to the Schmidt-Kennicutt relation found locally within our Galaxy, extending to lower SFRs and gas mass surface densities. Using an ETGs SFR and the Schmidt-Kennicutt law to predict its gas mass leads to an underestimate. ETGs have similar observed-gas-to-modelled-dust mass ratios to star forming-galaxies of the same stellar mass, as well as they exhibit a similar scatter.
We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines including CO(4-3) to CO(12-11), [CI] 609 and 370 micron, and [NII] 205 micron are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on 10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non-LTE radiative transfer models. We find that the CO-traced molecular gas in N159W is warm (kinetic temperature of 153-754 K) and moderately dense (H2 number density of (1.1-4.5)e3 cm-3). To assess the impact of the energetic processes in the interstellar medium on the physical conditions of the CO-emitting gas, we then compare the observed CO line intensities with the models of photodissociation regions (PDRs) and shocks. We first constrain the properties of PDRs by modelling Herschel observations of [OI] 145, [CII] 158, and [CI] 370 micron fine-structure lines and find that the constrained PDR components emit very weak CO emission. X-rays and cosmic-rays are also found to provide a negligible contribution to the CO emission, essentially ruling out ionizing sources (ultraviolet photons, X-rays, and cosmic-rays) as the dominant heating source for CO in N159W. On the other hand, mechanical heating by low-velocity C-type shocks with ~10 km/s appears sufficient enough to reproduce the observed warm CO.
We present the detection and analysis of molecular hydrogen emission toward ten interstellar regions in the Large Magellanic Cloud. We examined low-resolution infrared spectral maps of twelve regions obtained with the Spitzer infrared spectrograph (I RS). The pure rotational 0--0 transitions of H$_2$ at 28.2 and 17.1${,rm mu m}$ are detected in the IRS spectra for ten regions. The higher level transitions are mostly upper limit measurements except for three regions, where a 3$sigma$ detection threshold is achieved for lines at 12.2 and 8.6${,rm mu m}$. The excitation diagrams of the detected H$_2$ transitions are used to determine the warm H$_2$ gas column density and temperature. The single-temperature fits through the lower transition lines give temperatures in the range $86-137,{rm K}$. The bulk of the excited H$_2$ gas is found at these temperatures and contributes $sim$5-17% to the total gas mass. We find a tight correlation of the H$_2$ surface brightness with polycyclic aromatic hydrocarbon and total infrared emission, which is a clear indication of photo-electric heating in photodissociation regions. We find the excitation of H$_2$ by this process is equally efficient in both atomic and molecular dominated regions. We also present the correlation of the warm H$_2$ physical conditions with dust properties. The warm H$_2$ mass fraction and excitation temperature show positive correlations with the average starlight intensity, again supporting H$_2$ excitation in photodissociation regions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا