ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular hydrogen emission in the interstellar medium of the Large Magellanic Cloud

155   0   0.0 ( 0 )
 نشر من قبل Neelamkodan Naslim
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detection and analysis of molecular hydrogen emission toward ten interstellar regions in the Large Magellanic Cloud. We examined low-resolution infrared spectral maps of twelve regions obtained with the Spitzer infrared spectrograph (IRS). The pure rotational 0--0 transitions of H$_2$ at 28.2 and 17.1${,rm mu m}$ are detected in the IRS spectra for ten regions. The higher level transitions are mostly upper limit measurements except for three regions, where a 3$sigma$ detection threshold is achieved for lines at 12.2 and 8.6${,rm mu m}$. The excitation diagrams of the detected H$_2$ transitions are used to determine the warm H$_2$ gas column density and temperature. The single-temperature fits through the lower transition lines give temperatures in the range $86-137,{rm K}$. The bulk of the excited H$_2$ gas is found at these temperatures and contributes $sim$5-17% to the total gas mass. We find a tight correlation of the H$_2$ surface brightness with polycyclic aromatic hydrocarbon and total infrared emission, which is a clear indication of photo-electric heating in photodissociation regions. We find the excitation of H$_2$ by this process is equally efficient in both atomic and molecular dominated regions. We also present the correlation of the warm H$_2$ physical conditions with dust properties. The warm H$_2$ mass fraction and excitation temperature show positive correlations with the average starlight intensity, again supporting H$_2$ excitation in photodissociation regions.

قيم البحث

اقرأ أيضاً

We present the results of near- to mid-infrared slit spectroscopic observations (2.55--13.4 um) of the diffuse emission toward nine positions in the Large Magellanic Cloud with the Infrared Camera (IRC) on board AKARI. The target positions are select ed to cover a wide range of the intensity of the incident radiation field. The unidentified infrared bands at 3.3, 6.2, 7.7, 8.6 and 11.3 um are detected toward all the targets, and ionized gas signatures: hydrogen recombination lines and ionic forbidden lines toward three of them. We classify the targets into two groups: those without the ionized gas signatures (Group A) and those with the ionized signatures (Group B). Group A includes molecular clouds and photo-dissociation regions, whereas Group B consists of HII regions. In Group A, the band ratios of I(3.3)/I(11.3), I(6.2)/I(11.3), I(7.7)/$I(11.3) and $I(8.6)/$I(11.3) show positive correlation with the IRAS and AKARI colors, but those of Group B do not follow the correlation. We discuss the results in terms of the polycyclic aromatic hydrocarbon (PAH) model and attribute the difference to the destruction of small PAHs and an increase in the recombination due to the high electron density in Group B. In the present study, the 3.3 um band provides crucial information on the size distribution and/or the excitation conditions of PAHs and plays a key role in the distinction of Group A from B. The results suggest the possibility of the diagram of I(3.3)/I(11.3) v.s. $I(7.7)/$I(11.3) as an efficient diagnostic tool to infer the physical conditions of the interstellar medium.
We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. We identify clouds as regions of connected CO emission, and find that the distributions of cloud sizes, fluxes and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL propto L^{-2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a clouds kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.
We present high-resolution (sub-parsec) observations of a giant molecular cloud in the nearest star-forming galaxy, the Large Magellanic Cloud. ALMA Band 6 observations trace the bulk of the molecular gas in $^{12}$CO(2-1) and high column density reg ions in $^{13}$CO(2-1). Our target is a quiescent cloud (PGCC G282.98-32.40, which we refer to as the Planck cold cloud or PCC) in the southern outskirts of the galaxy where star-formation activity is very low and largely confined to one location. We decompose the cloud into structures using a dendrogram and apply an identical analysis to matched-resolution cubes of the 30 Doradus molecular cloud (located near intense star formation) for comparison. Structures in the PCC exhibit roughly 10 times lower surface density and 5 times lower velocity dispersion than comparably sized structures in 30 Dor, underscoring the non-universality of molecular cloud properties. In both clouds, structures with relatively higher surface density lie closer to simple virial equilibrium, whereas lower surface density structures tend to exhibit super-virial line widths. In the PCC, relatively high line widths are found in the vicinity of an infrared source whose properties are consistent with a luminous young stellar object. More generally, we find that the smallest resolved structures (leaves) of the dendrogram span close to the full range of line widths observed across all scales. As a result, while the bulk of the kinetic energy is found on the largest scales, the small-scale energetics tend to be dominated by only a few structures, leading to substantial scatter in observed size-linewidth relationships.
We present the analysis of supernova remnants (SNRs) in the Large Magellanic Cloud (LMC) and their influence on the environment at far-infrared (FIR) and submillimeter wavelengths. We use new observations obtained with the {it Herschel} Space Observa tory and archival data obtained with the {it Spitzer} Space Telescope, to make the first FIR atlas of these objects. The SNRs are not clearly discernible at FIR wavelengths, however their influence becomes apparent in maps of dust mass and dust temperature, which we constructed by fitting a modified black-body to the observed spectral energy distribution in each sightline. Most of the dust that is seen is pre-existing interstellar dust in which SNRs leave imprints. The temperature maps clearly reveal SNRs heating surrounding dust, while the mass maps indicate the removal of 3.7$^{+7.5}_{-2.5}$ M$_{odot}$ of dust per SNR. This agrees with the calculations by others that significant amounts of dust are sputtered by SNRs. Under the assumption that dust is sputtered and not merely pushed away, we estimate a dust destruction rate in the LMC of $0.037^{+0.075}_{-0.025}$ M$_odot$ yr$^{-1}$ due to SNRs, yielding an average lifetime for interstellar dust of $2^{+4.0}_{-1.3}times10^7$ yr. We conclude that sputtering of dust by SNRs may be an important ingredient in models of galactic evolution, that supernovae may destroy more dust than they produce, and that they therefore may not be net producers of long lived dust in galaxies.
We investigate the Hi envelope of the young, massive GMCs in the star-forming regions N48 and N49, which are located within the high column density Hi ridge between two kpc-scale supergiant shells, LMC 4 and LMC 5. New long-baseline Hi 21 cm line obs ervations with the Australia Telescope Compact Array (ATCA) were combined with archival shorter baseline data and single dish data from the Parkes telescope, for a final synthesized beam size of 24.75 by 20.48, which corresponds to a spatial resolution of ~ 6 pc in the LMC. It is newly revealed that the Hi gas is highly filamentary, and that the molecular clumps are distributed along filamentary Hi features. In total 39 filamentary features are identified and their typical width is ~ 21 (8-49) [pc]. We propose a scenario in which the GMCs were formed via gravitational instabilities in atomic gas which was initially accumulated by the two shells and then further compressed by their collision. This suggests that GMC formation involves the filamentary nature of the atomic medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا