ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative and mechanical feedback into the molecular gas in the Large Magellanic Cloud. II. 30 Doradus

107   0   0.0 ( 0 )
 نشر من قبل Min-Young Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With an aim of probing the physical conditions and excitation mechanisms of warm molecular gas in individual star-forming regions, we performed Herschel SPIRE FTS observations of 30 Doradus in the LMC. In our FTS observations, important FIR cooling lines in the ISM, including CO J=4-3 to 13-12, [CI] 370 micron, and [NII] 205 micron, were clearly detected. In combination with ground-based CO data, we then constructed CO spectral line energy distributions (SLEDs) on 10 pc scales over a 60 pc x 60 pc area and found that the shape of the observed CO SLEDs considerably changes across 30 Doradus, e.g., the peak transition varies from J=6-5 to 10-9, while the slope characterized by the high-to-intermediate J ratio ranges from 0.4 to 1.8. To examine the source(s) of these variations in CO transitions, we analyzed the CO observations, along with [CII] 158 micron, [CI] 370 micron, [OI] 145 micron, H2 0-0 S(3), and FIR luminosity data, using state-of-the-art models of PDRs and shocks. Our detailed modeling showed that the observed CO emission likely originates from highly-compressed (thermal pressure ~ 1e7-1e9 K cm-3) clumps on 0.7-2 pc scales, which could be produced by either UV photons (UV radiation field ~ 1e3-1e5 Mathis fields) or low-velocity C-type shocks (pre-shock medium density ~ 1e4-1e6 cm-3 and shock velocity ~ 5-10 km s-1). Considering the stellar content in 30 Doradus, however, we tentatively excluded the stellar origin of CO excitation and concluded that low-velocity shocks driven by kpc scale processes (e.g., interaction between the Milky Way and the Magellanic Clouds) are likely the dominant source of heating for CO. The shocked CO-bright medium was then found to be warm (temperature ~ 100-500 K) and surrounded by a UV-regulated low pressure component (a few (1e4-1e5) K cm-3) that is bright in [CII] 158 micron, [CI] 370 micron, [OI] 145 micron, and FIR dust continuum emission.



قيم البحث

اقرأ أيضاً

We present Herschel SPIRE Fourier Transform Spectrometer (FTS) observations of N159W, an active star-forming region in the Large Magellanic Cloud (LMC). In our observations, a number of far-infrared cooling lines including CO(4-3) to CO(12-11), [CI] 609 and 370 micron, and [NII] 205 micron are clearly detected. With an aim of investigating the physical conditions and excitation processes of molecular gas, we first construct CO spectral line energy distributions (SLEDs) on 10 pc scales by combining the FTS CO transitions with ground-based low-J CO data and analyze the observed CO SLEDs using non-LTE radiative transfer models. We find that the CO-traced molecular gas in N159W is warm (kinetic temperature of 153-754 K) and moderately dense (H2 number density of (1.1-4.5)e3 cm-3). To assess the impact of the energetic processes in the interstellar medium on the physical conditions of the CO-emitting gas, we then compare the observed CO line intensities with the models of photodissociation regions (PDRs) and shocks. We first constrain the properties of PDRs by modelling Herschel observations of [OI] 145, [CII] 158, and [CI] 370 micron fine-structure lines and find that the constrained PDR components emit very weak CO emission. X-rays and cosmic-rays are also found to provide a negligible contribution to the CO emission, essentially ruling out ionizing sources (ultraviolet photons, X-rays, and cosmic-rays) as the dominant heating source for CO in N159W. On the other hand, mechanical heating by low-velocity C-type shocks with ~10 km/s appears sufficient enough to reproduce the observed warm CO.
Determining the efficiency with which gas is converted into stars in galaxies requires an accurate determination of the total reservoir of molecular gas mass. However, despite being the most abundant molecule in the Universe, H$_2$ is challenging to detect through direct observations and indirect methods have to be used to estimate the total molecular gas reservoir. These are often based on scaling relations from tracers such as CO or dust, and are generally calibrated in the Milky Way. Yet, evidence that these scaling relations are environmentally dependent is growing. In particular, the commonly used CO-to-H$_2$ conversion factor (X$_{rm CO}$) is expected to be higher in metal-poor and/or strongly UV-irradiated environments. We use new SOFIA/FIFI-LS observations of far-infrared fine structure lines from the ionised and neutral gas and the Meudon photodissociation region model to constrain the physical properties and the structure of the gas in the massive star-forming region of 30 Doradus in the Large Magellanic Cloud, and determine the spatially resolved distribution of the total reservoir of molecular gas in the proximity of the young massive cluster R136. We compare this value with the molecular gas mass inferred from ground-based CO observations and dust-based estimates to quantify the impact of this extreme environment on commonly used tracers of the molecular gas. We find that the strong radiation field combined with the half-solar metallicity of the surrounding gas are responsible for a large reservoir of CO-dark molecular gas, leaving a large fraction of the total H$_2$ gas (> 75%) undetected when adopting a standard X$_{rm CO}$ factor in this massive star-forming region.
We present a catalog of relative proper motions for 368,787 stars in the 30 Doradus region of the Large Magellanic Cloud (LMC), based on a dedicated two-epoch survey with the Hubble Space Telescope (HST) and supplemented with proper motions from our pilot archival study. We demonstrate that a relatively short epoch difference of 3 years is sufficient to reach a $sim$0.1 mas yr$^{-1}$ level of precision or better. A number of stars have relative proper motions exceeding a 3-sigma error threshold, representing a mixture of Milky Way denizens and 17 potential LMC runaway stars. Based upon 183 VFTS OB-stars with the best proper motions, we conclude that none of them move faster than $sim$0.3 mas yr$^{-1}$ in each coordinate -- equivalent to $sim$70 km s$^{-1}$. Among the remaining 351 VFTS stars with less accurate proper motions, only one candidate OB runaway can be identified. We rule out any OB star in our sample moving at a tangential velocity exceeding $sim$120 km s$^{-1}$. The most significant result of this study is finding 10 stars over wide range of masses, which appear to be ejected from the massive star cluster R136 in the tangential plane to angular distances from $35^{primeprime}$ out to $407^{primeprime}$, equivalent to 8-98 pc. The tangential velocities of these runaways appear to be correlated with apparent magnitude, indicating a possible dependence on the stellar mass.
428 - Y. Fukui 2009
We compare the CO J =(1-0) and HI emission in the Large Magellanic Cloud (LMC) in three dimensions, i.e. including a velocity axis in addition to the two spatial axes, with the aim of elucidating the physical connection between giant molecular clouds (GMCs) and their surrounding HI gas. The CO J =1-0 dataset is from the second NANTEN CO survey and the HI dataset is from the merged Australia Telescope Compact Array (ATCA) and Parkes Telescope surveys. The major findings of our analysis are: 1) GMCs are associated with an envelope of HI emission, 2) in GMCs [average CO intensity] is proportional to [average HI intensity]^[1.1+-0.1] and 3) the HI intensity tends to increase with the star formation activity within GMCs, from Type I to Type III. An analysis of the HI envelopes associated with GMCs shows that their average linewidth is 14 km s-1 and the mean density in the envelope is 10 cm-3. We argue that the HI envelopes are gravitationally bound by GMCs. These findings are consistent with a continual increase in the mass of GMCs via HI accretion at an accretion rate of 0.05 Msun/yr over a time scale of 10 Myr. The growth of GMCs is terminated via dissipative ionization and/or stellar-wind disruption in the final stage of GMC evolution.
We study three subregions in the HII region N11 which is located at the northeast side of the Large Magellanic Cloud (LMC). We used $^{12}$CO and $^{13}$CO J=3--2 data observed with the Atacama Submillimeter Telescope Experiment (ASTE) with an angula r and spectral resolution of 22$^{primeprime}$ and 0.11 km s$^{-1}$ respectively. From the $^{12}$CO J=3--2 and $^{13}$CO J=3--2 integrated maps we estimated, assuming local thermodynamic equilibrium (LTE), masses in about $10^4$ M$_odot$ for the molecular clouds associated with each subregion. Additionally, from the mentioned maps we study the $^{12}$CO /$^{13}$CO integrated ratios for each subregion, obtaining values between 8 and 10.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا