ترغب بنشر مسار تعليمي؟ اضغط هنا

We calculate the thermopower of monolayer graphene in various circumstances. First we show that experiments on the thermopower of graphene can be understood quantitatively with a very simple model of screening in the semiclassical limit. We can calcu late the energy dependent scattering time for this model exactly. We then consider acoustic phonon scattering which might be the operative scattering mechanism in free standing films, and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. Finally, we show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally.
Integrable and non-integrable systems have very different transport properties. In this work, we highlight these differences for specific one dimensional models of interacting lattice fermions using numerical exact diagonalization. We calculate the f inite temperature adiabatic stiffness (or Drude weight) and isothermal stiffness (or ``Meissner stiffness) in electrical and thermal transport and also compute the complete momentum and frequency dependent dynamical conductivities $sigma(q,omega)$ and $kappa(q,omega)$. The Meissner stiffness goes to zero rapidly with system size for both integrable and non-integrable systems. The Drude weight shows signs of diffusion in the non-integrable system and ballistic behavior in the integrable system. The dynamical conductivities are also consistent with ballistic and diffusive behavior in the integrable and non-integrable systems respectively.
The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in an optical trap. We study the general ground state phase diagram of a spin-1 system and focus on a phase that has a magnetic Ising order parameter and numerically determine the nature of the finite temperature superfluid and magnetic phase transitions. We then study three different dynamical models: model A, which has no conserved quantities, model F, which has a conserved second sound mode and the Gross-Pitaevskii (GP) equation which has a conserved density and magnetization. We find the dynamic critical exponent to be the same for models A and F ($z=2$) but different for GP ($z approx 3$). Externally imposed magnetization conservation in models A and F yields the value $z approx 3$, which demonstrates that the only conserved density relevant to domain formation is the magnetization density.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا