ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of integrability in charge and thermal transport in 1D quantum systems

48   0   0.0 ( 0 )
 نشر من قبل Subroto Mukerjee
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrable and non-integrable systems have very different transport properties. In this work, we highlight these differences for specific one dimensional models of interacting lattice fermions using numerical exact diagonalization. We calculate the finite temperature adiabatic stiffness (or Drude weight) and isothermal stiffness (or ``Meissner stiffness) in electrical and thermal transport and also compute the complete momentum and frequency dependent dynamical conductivities $sigma(q,omega)$ and $kappa(q,omega)$. The Meissner stiffness goes to zero rapidly with system size for both integrable and non-integrable systems. The Drude weight shows signs of diffusion in the non-integrable system and ballistic behavior in the integrable system. The dynamical conductivities are also consistent with ballistic and diffusive behavior in the integrable and non-integrable systems respectively.

قيم البحث

اقرأ أيضاً

Quantum spin liquids (QSLs) are intriguing phases of matter possessing fractionalized excitations. Several quasi-two dimensional materials have been proposed as candidate QSLs, but direct evidence for fractionalization in these systems is still lacki ng. In this paper, we show that the inter-plane thermal conductivity in layered QSLs carries a unique signature of fractionalization. We examine several types of gapless QSL phases - a $Z_2$ QSL with either a Dirac spectrum or a spinon Fermi surface, and a $U(1)$ QSL with a Fermi surface. In all cases, the in-plane and $c-$axis thermal conductivities have a different power law dependence on temperature, due to the different mechanisms of transport in the two directions: in the planes, the thermal current is carried by fractionalized excitations, whereas the inter-plane current is carried by integer (non-fractional) excitations. In layered $Z_2$ and $U(1)$ QSLs with a Fermi surface, the $c-$axis thermal conductivity is parametrically smaller than the in-plane one, but parametrically larger than the phonon contribution at low temperatures.
56 - Yuval Vinkler-Aviv 2019
We derive and calculate thermal transport coefficient for a quantum Hall system in the linear response regime, and show that they are exponentially small in the bulk, in contrast to the quantized value of the charge Hall coefficient, thus violating W iedemann-Franz law. This corroborates earlier reports about the essential difference between the charge and thermal quantum Hall effect, that originates from the different behavior of the corresponding $U(1)$ and gravitational anomalies. We explicitly calculate the bulk currents when a temperature profile is applied within the bulk, and show that they are proportional to the second derivative of the respective gravitational potential (tidal force), and nonuniversal, in contrast to the charge current which is proportional to the first derivative of the electrochemical potential.
We present the real-time renormalization group (RTRG) method as a method to describe the stationary state current through generic multi-level quantum dots with a complex setup in nonequilibrium. The employed approach consists of a very rudiment appro ximation for the RG equations which neglects all vertex corrections while it provides a means to compute the effective dot Liouvillian self-consistently. Being based on a weak-coupling expansion in the tunneling between dot and reservoirs, the RTRG approach turns out to reliably describe charge fluctuations in and out of equilibrium for arbitrary coupling strength, even at zero temperature. We confirm this in the linear response regime with a benchmark against highly-accurate numerically renormalization group data in the exemplary case of three-level quantum dots. For small to intermediate bias voltages and weak Coulomb interactions, we find an excellent agreement between RTRG and functional renormalization group data, which can be expected to be accurate in this regime. As a consequence, we advertise the presented RTRG approach as an efficient and versatile tool to describe charge fluctuations theoretically in quantum dot systems.
A recent experiment on a 51-atom Rydberg blockaded chain observed anomalously long-lived temporal oscillations of local observables after quenching from an antiferromagnetic initial state. This coherence is surprising as the initial state should have thermalized rapidly to infinite temperature. In this article, we show that the experimental Hamiltonian exhibits non-thermal behavior across its entire many-body spectrum, with similar finite-size scaling properties as models proximate to integrable points. Moreover, we construct an explicit small local deformation of the Hamiltonian which enhances both the signatures of integrability and the coherent oscillations observed after the quench. Our results suggest that a parent proximate integrable point controls the early-to-intermediate time dynamics of the experimental system. The unconventional quench dynamics in the parent model could signal a novel class of integrable system.
100 - Bo Xiong , Fiona J. Burnell 2021
We study the impact of the inter-level energy constraints imposed by Haldane Exclusion Statistics on relaxation processes in 1-dimensional systems coupled to a bosonic bath. By formulating a second-quantized description of the relevant Fock space, we identify certain universal features of this relaxation dynamics, and show that it is generically slower than that of spinless fermions. Our study focuses on the Calogero-Sutherland model, which realizes Haldane Exclusion statistics exactly in one dimension; however our results apply to any system that has the associated pattern of inter-level occupancy constraints in Fock space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا