ترغب بنشر مسار تعليمي؟ اضغط هنا

Crafting adversarial examples for the transfer-based attack is challenging and remains a research hot spot. Currently, such attack methods are based on the hypothesis that the substitute model and the victims model learn similar decision boundaries, and they conventionally apply Sign Method (SM) to manipulate the gradient as the resultant perturbation. Although SM is efficient, it only extracts the sign of gradient units but ignores their value difference, which inevitably leads to a serious deviation. Therefore, we propose a novel Staircase Sign Method (S$^2$M) to alleviate this issue, thus boosting transfer-based attacks. Technically, our method heuristically divides the gradient sign into several segments according to the values of the gradient units, and then assigns each segment with a staircase weight for better crafting adversarial perturbation. As a result, our adversarial examples perform better in both white-box and black-box manner without being more visible. Since S$^2$M just manipulates the resultant gradient, our method can be generally integrated into any transfer-based attacks, and the computational overhead is negligible. Extensive experiments on the ImageNet dataset demonstrate the effectiveness of our proposed methods, which significantly improve the transferability (i.e., on average, textbf{5.1%} for normally trained models and textbf{11.2%} for adversarially trained defenses). Our code is available at: url{https://github.com/qilong-zhang/Staircase-sign-method}.
103 - Boer Lyu , Lu Chen , Su Zhu 2021
Chinese short text matching is a fundamental task in natural language processing. Existing approaches usually take Chinese characters or words as input tokens. They have two limitations: 1) Some Chinese words are polysemous, and semantic information is not fully utilized. 2) Some models suffer potential issues caused by word segmentation. Here we introduce HowNet as an external knowledge base and propose a Linguistic knowledge Enhanced graph Transformer (LET) to deal with word ambiguity. Additionally, we adopt the word lattice graph as input to maintain multi-granularity information. Our model is also complementary to pre-trained language models. Experimental results on two Chinese datasets show that our models outperform various typical text matching approaches. Ablation study also indicates that both semantic information and multi-granularity information are important for text matching modeling.
One daunting problem for semantic parsing is the scarcity of annotation. Aiming to reduce nontrivial human labor, we propose a two-stage semantic parsing framework, where the first stage utilizes an unsupervised paraphrase model to convert an unlabel ed natural language utterance into the canonical utterance. The downstream naive semantic parser accepts the intermediate output and returns the target logical form. Furthermore, the entire training process is split into two phases: pre-training and cycle learning. Three tailored self-supervised tasks are introduced throughout training to activate the unsupervised paraphrase model. Experimental results on benchmarks Overnight and GeoGranno demonstrate that our framework is effective and compatible with supervised training.
97 - Chen Liu , Su Zhu , Zijian Zhao 2020
Spoken Language Understanding (SLU) converts hypotheses from automatic speech recognizer (ASR) into structured semantic representations. ASR recognition errors can severely degenerate the performance of the subsequent SLU module. To address this issu e, word confusion networks (WCNs) have been used to encode the input for SLU, which contain richer information than 1-best or n-best hypotheses list. To further eliminate ambiguity, the last system act of dialogue context is also utilized as additional input. In this paper, a novel BERT based SLU model (WCN-BERT SLU) is proposed to encode WCNs and the dialogue context jointly. It can integrate both structural information and ASR posterior probabilities of WCNs in the BERT architecture. Experiments on DSTC2, a benchmark of SLU, show that the proposed method is effective and can outperform previous state-of-the-art models significantly.
113 - Su Zhu , Jieyu Li , Lu Chen 2020
Dialogue state tracking (DST) aims at estimating the current dialogue state given all the preceding conversation. For multi-domain DST, the data sparsity problem is a major obstacle due to increased numbers of state candidates and dialogue lengths. T o encode the dialogue context efficiently, we utilize the previous dialogue state (predicted) and the current dialogue utterance as the input for DST. To consider relations among different domain-slots, the schema graph involving prior knowledge is exploited. In this paper, a novel context and schema fusion network is proposed to encode the dialogue context and schema graph by using internal and external attention mechanisms. Experiment results show that our approach can obtain new state-of-the-art performance of the open-vocabulary DST on both MultiWOZ 2.0 and MultiWOZ 2.1 benchmarks.
70 - Su Zhu , Zijian Zhao , Rao Ma 2020
Traditional slot filling in natural language understanding (NLU) predicts a one-hot vector for each word. This form of label representation lacks semantic correlation modelling, which leads to severe data sparsity problem, especially when adapting an NLU model to a new domain. To address this issue, a novel label embedding based slot filling framework is proposed in this paper. Here, distributed label embedding is constructed for each slot using prior knowledge. Three encoding methods are investigated to incorporate different kinds of prior knowledge about slots: atomic concepts, slot descriptions, and slot exemplars. The proposed label embeddings tend to share text patterns and reuses data with different slot labels. This makes it useful for adaptive NLU with limited data. Also, since label embedding is independent of NLU model, it is compatible with almost all deep learning based slot filling models. The proposed approaches are evaluated on three datasets. Experiments on single domain and domain adaptation tasks show that label embedding achieves significant performance improvement over traditional one-hot label representation as well as advanced zero-shot approaches.
98 - Zijian Zhao , Su Zhu , Kai Yu 2019
Spoken Language Understanding (SLU) converts user utterances into structured semantic representations. Data sparsity is one of the main obstacles of SLU due to the high cost of human annotation, especially when domain changes or a new domain comes. I n this work, we propose a data augmentation method with atomic templates for SLU, which involves minimum human efforts. The atomic templates produce exemplars for fine-grained constituents of semantic representations. We propose an encoder-decoder model to generate the whole utterance from atomic exemplars. Moreover, the generator could be transferred from source domains to help a new domain which has little data. Experimental results show that our method achieves significant improvements on DSTC 2&3 dataset which is a domain adaptation setting of SLU.
154 - Ruisheng Cao , Su Zhu , Chen Liu 2019
Semantic parsing converts natural language queries into structured logical forms. The paucity of annotated training samples is a fundamental challenge in this field. In this work, we develop a semantic parsing framework with the dual learning algorit hm, which enables a semantic parser to make full use of data (labeled and even unlabeled) through a dual-learning game. This game between a primal model (semantic parsing) and a dual model (logical form to query) forces them to regularize each other, and can achieve feedback signals from some prior-knowledge. By utilizing the prior-knowledge of logical form structures, we propose a novel reward signal at the surface and semantic levels which tends to generate complete and reasonable logical forms. Experimental results show that our approach achieves new state-of-the-art performance on ATIS dataset and gets competitive performance on Overnight dataset.
Quantization has been an effective technology in ANN (approximate nearest neighbour) search due to its high accuracy and fast search speed. To meet the requirement of different applications, there is always a trade-off between retrieval accuracy and speed, reflected by variable code lengths. However, to encode the dataset into different code lengths, existing methods need to train several models, where each model can only produce a specific code length. This incurs a considerable training time cost, and largely reduces the flexibility of quantization methods to be deployed in real applications. To address this issue, we propose a Deep Recurrent Quantization (DRQ) architecture which can generate sequential binary codes. To the end, when the model is trained, a sequence of binary codes can be generated and the code length can be easily controlled by adjusting the number of recurrent iterations. A shared codebook and a scalar factor is designed to be the learnable weights in the deep recurrent quantization block, and the whole framework can be trained in an end-to-end manner. As far as we know, this is the first quantization method that can be trained once and generate sequential binary codes. Experimental results on the benchmark datasets show that our model achieves comparable or even better performance compared with the state-of-the-art for image retrieval. But it requires significantly less number of parameters and training times. Our code is published online: https://github.com/cfm-uestc/DRQ.
Product Quantization (PQ) has long been a mainstream for generating an exponentially large codebook at very low memory/time cost. Despite its success, PQ is still tricky for the decomposition of high-dimensional vector space, and the retraining of mo del is usually unavoidable when the code length changes. In this work, we propose a deep progressive quantization (DPQ) model, as an alternative to PQ, for large scale image retrieval. DPQ learns the quantization codes sequentially and approximates the original feature space progressively. Therefore, we can train the quantization codes with different code lengths simultaneously. Specifically, we first utilize the label information for guiding the learning of visual features, and then apply several quantization blocks to progressively approach the visual features. Each quantization block is designed to be a layer of a convolutional neural network, and the whole framework can be trained in an end-to-end manner. Experimental results on the benchmark datasets show that our model significantly outperforms the state-of-the-art for image retrieval. Our model is trained once for different code lengths and therefore requires less computation time. Additional ablation study demonstrates the effect of each component of our proposed model. Our code is released at https://github.com/cfm-uestc/DPQ.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا