ﻻ يوجد ملخص باللغة العربية
Traditional slot filling in natural language understanding (NLU) predicts a one-hot vector for each word. This form of label representation lacks semantic correlation modelling, which leads to severe data sparsity problem, especially when adapting an NLU model to a new domain. To address this issue, a novel label embedding based slot filling framework is proposed in this paper. Here, distributed label embedding is constructed for each slot using prior knowledge. Three encoding methods are investigated to incorporate different kinds of prior knowledge about slots: atomic concepts, slot descriptions, and slot exemplars. The proposed label embeddings tend to share text patterns and reuses data with different slot labels. This makes it useful for adaptive NLU with limited data. Also, since label embedding is independent of NLU model, it is compatible with almost all deep learning based slot filling models. The proposed approaches are evaluated on three datasets. Experiments on single domain and domain adaptation tasks show that label embedding achieves significant performance improvement over traditional one-hot label representation as well as advanced zero-shot approaches.
Intent classification and slot filling are two critical tasks for natural language understanding. Traditionally the two tasks have been deemed to proceed independently. However, more recently, joint models for intent classification and slot filling h
We propose an unsupervised neural model for learning a discrete embedding of words. Unlike existing discrete embeddings, our binary embedding supports vector arithmetic operations similar to continuous embeddings. Our embedding represents each word a
Natural language understanding (NLU) of text is a fundamental challenge in AI, and it has received significant attention throughout the history of NLP research. This primary goal has been studied under different tasks, such as Question Answering (QA)
We have recently seen the emergence of several publicly available Natural Language Understanding (NLU) toolkits, which map user utterances to structured, but more abstract, Dialogue Act (DA) or Intent specifications, while making this process accessi
Existing pre-trained language models (PLMs) have demonstrated the effectiveness of self-supervised learning for a broad range of natural language processing (NLP) tasks. However, most of them are not explicitly aware of domain-specific knowledge, whi