ترغب بنشر مسار تعليمي؟ اضغط هنا

We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.
Finite temperature charmonium spectral functions in the pseudoscalar and vector channels are studied in lattice QCD with 2+1 flavours of dynamical Wilson quarks, on fine isotropic lattices (with a lattice spacing of 0.057 fm), with a non-physical pio n mass of $m_{pi} approx$ 545 MeV. The highest temperature studied is approximately $1.4 T_c$. Up to this temperature no significant variation of the spectral function is seen in the pseudoscalar channel. The vector channel shows some temperature dependence, which seems to be consistent with a temperature dependent low frequency peak related to heavy quark transport, plus a temperature independent term at omega>0. These results are in accord with previous calculations using the quenched approximation.
We perform a detailed, fully-correlated study of the chiral behavior of the pion mass and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O(a)-improved Wilson fermions, at four values of the lattice spacing down to 0.054 fm and all the way down to below the physical value of the pion mass. They allow a sharp comparison with the predictions of SU(2) chiral perturbation theory (chi PT) and a determination of some of its low energy constants. In particular, we systematically explore the range of applicability of NLO SU(2) chi PT in two different expansions: the first in quark mass (x-expansion), and the second in pion mass (xi-expansion). We find that these expansions begin showing signs of failure around M_pi=300 MeV for the typical percent-level precision of our N_f=2+1 lattice results. We further determine the LO low energy constants (LECs), F=88.0 pm 1.3pm 0.3 and B^msbar(2 GeV)=2.58 pm 0.07 pm 0.02 GeV, and the related quark condensate, Sigma^msbar(2 GeV)=(271pm 4pm 1 MeV)^3, as well as the NLO ones, l_3=2.5 pm 0.5 pm 0.4 and l_4=3.8 pm 0.4 pm 0.2, with fully controlled uncertainties. We also explore the NNLO expansions and the values of NNLO LECs. In addition, we show that the lattice results favor the presence of chiral logarithms. We further demonstrate how the absence of lattice results with pion masses below 200 MeV can lead to misleading results and conclusions. Our calculations allow a fully controlled, ab initio determination of the pion decay constant with a total 1% error, which is in excellent agreement with experiment.
At the precision reached in current lattice QCD calculations, electromagnetic effects are becoming numerically relevant. Here, electromagnetic effects are included by superimposing $mathrm{U}(1)$ degrees of freedom on $N_f = 2+1$ QCD configurations f rom the Budapest-Marseille-Wuppertal Collaboration. We present preliminary results for the electromagnetic corrections to light pseudoscalars mesons masses and discuss some of the associated systematic errors.
We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations wit h Symanzik glue and 2-fold stout-smeared staggered fermions, with pion masses varying from 135 MeV to 400 MeV, lattice scales between 0.7 GeV and 2.0 GeV, and m_s kept at its physical value. Furthermore, by excluding the lightest mass points, we are able to test the reliability of SU(2) chPT as a tool to extrapolate towards the physical point from higher pion masses.
We present a calculation of the ratio of the charm quark mass to the strange quark mass. Using the Brillouin improved Wilson action, we are able to calculate this ratio in a single framework, using a relativistic fermionic action throughout. The calc ulation is carried out on selected ensembles of two flavor clover improved lattices produced by the QCDSF collaboration, allowing an extrapolation to the continuum, to infinite volume and to the physical pion mass.
The goal of this study is to investigate the scaling behaviour of our 2 HEX action. For this purpose, we compute the $N_f=3$ spectrum and compare the results to our 6 EXP action. We find a large scaling window up to $sim 0.15,mathrm{fm}$ along with s mall scaling corrections at the 2%-level and full compatibility with our previous study. As a second important observable to be tested for scaling, we chose the non-perturbatively renormalized quenched strange quark mass. Here we find a fairly flat scaling with a broad scaling range up to $simeq 0.15,mathrm{fm}$ and perfect agreement with the literature.
We improve a previous quenched result for heavy-light pseudoscalar meson decay constants with the light quark taken to be the strange quark. A finer lattice resolution (a ~ 0.05 fm) in the continuum limit extrapolation of the data computed in the sta tic approximation is included. We also give further details concerning the techniques used in order to keep the statistical and systematic errors at large lattice sizes L/a under control. Our final result, obtained by combining these data with determinations of the decay constant for pseudoscalar mesons around the D_s, follows nicely the qualitative expectation of the 1/m-expansion with a (relative) 1/m-term of about -0.5 GeV/m_PS. At the physical b-quark mass we obtain F_{B_s} = 193(7) MeV, where all errors apart from the quenched approximation are included.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا