ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling study for 2 HEX smeared fermions: hadron and quark masses

107   0   0.0 ( 0 )
 نشر من قبل Thorsten Kurth
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this study is to investigate the scaling behaviour of our 2 HEX action. For this purpose, we compute the $N_f=3$ spectrum and compare the results to our 6 EXP action. We find a large scaling window up to $sim 0.15,mathrm{fm}$ along with small scaling corrections at the 2%-level and full compatibility with our previous study. As a second important observable to be tested for scaling, we chose the non-perturbatively renormalized quenched strange quark mass. Here we find a fairly flat scaling with a broad scaling range up to $simeq 0.15,mathrm{fm}$ and perfect agreement with the literature.



قيم البحث

اقرأ أيضاً

68 - N. Eicker , Th. Lippert , B. Orth 2001
We present new data on the mass of the light and strange quarks from SESAM/T$chi$L. The results were obtained on lattice-volumes of $16^3times 32$ and $24^3times 40$ points, with the possibility to investigate finite-size effects. Since the SESAM/T$c hi$L ensembles at $beta=5.6$ have been complemented by configurations with $beta=5.5$, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions.
CP-PACS and JLQCD collaborations are carrying out a joint project of the 2+1 flavor full QCD simulation. Gauge configurations are generated for the non-perturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action using PHMC algorit hm at three lattice spacings, $asim 0.076$, 0.010 and 0.122 fm, with a fixed physical volume $(2.0 fm)^3$. We present analysis for the light meson spectrum and quark masses in the continuum limit, which are determined using data obtained from the simulations at the two coarser lattices. Our simulations reproduce experimental values of meson masses. The ud and strange quark masses turn out to be $m_{ud}^{bar{MS}}(mu=2 GeV)=3.34(23) MeV$ and $m_s^{bar{MS}}(mu=2 GeV)=86.7(5.9) MeV$. We also show preliminary results at our finest lattice spacing for which simulations are still being continued.
79 - M. Bruno , I. Campos , J. Koponen 2019
We present a nearly final analysis of the $u/d$ and $s$ quark masses, extracted using the PCAC quark masses reported in [PRD 95 (2017) 074504]. The data is based on the CLS $N_f = 2 + 1$ simulations with Wilson/Clover quarks and Luscher-Weisz gauge a ction, at four $beta$ values (i.e. lattice spacings) and a range of quark masses. We use the ALPHA results of [EPJC 78 (2018) 387] for non-perturbative quark mass renormalisation and RG-running from hadronic to electroweak scales in the Schrodinger Functional scheme. Quark masses are quoted both in the $overline{rm MS}$ scheme and as RGI quantities.
For the Stout Link Non-perturbative Clover (SLiNC) action we determine in one-loop lattice perturbation theory the critical hopping parameter $kappa_c$ and the clover parameter $c_{SW}$ which is needed for $mathcal{O}(a)$ improvement. Performing this calculation off-shell we are also able to compute the non gauge invariant quark field improvement coefficient $c_{NGI}$. Additionally, we present first results for the renormalization factors of the scalar, pseudoscalar, vector and axial vector currents. We discuss mean field improvement for the SLiNC action.
We discuss an action in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree level) Symanzik improved gluon action this constitutes the Stout Link Non-perturb ative Clover or SLiNC action. To cancel O(a) terms the clover coefficient, csw, has to be tuned. We present here preliminary results of a non-perturbative determination of csw using the Schrodinger functional and as a by-product also a determination of the critical hopping parameter. A determination of the renormalisation constant for the local vector current is also given. Comparisons of the results are made with lowest order perturbation theory results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا