ترغب بنشر مسار تعليمي؟ اضغط هنا

The statistical features of the radiation emitted by Free-Electron Lasers (FELs), either by Self-Amplified Spontaneous Emission (SASE-FELs) or by seeded emission (seeded-FELs), are attracting increasing attention because of the use of such light in p robing high energy states of matter and their dynamics. While the experimental studies conducted so far have mainly concentrated on correlation functions, here we shift the focus towards reconstructing the distribution of the occupation numbers of the radiation energy states. In order to avoid the various drawbacks related to photon counting techniques when large numbers of photons are involved, we propose a Maximum Likelihood reconstruction of the diagonal elements of the FEL radiation states in the energy eigenbasis based on the statistics of no-click events. The ultimate purpose of such a novel approach to FEL radiation statistics is the experimental confirmation that SASE-FEL radiation exhibits thermal occupation number statistics, while seeded-FEL light Poissonian statistics typical of coherent states and thus of laser light. In this framework, it is interesting to note that the outcome of this work can be extended to any process of harmonic generation from a coherent light pulse, unlocking the gate to the study of the degree to which the original distinctive quantum features deduced from the statistical photon number fluctuations are preserved in non-linear optical processes.
Continuous-time quantum walks (CTQWs) provide a valuable model for quantum transport, universal quantum computation and quantum spatial search, among others. Recently, the empowering role of new degrees of freedom in the Hamiltonian generator of CTQW s, which are the complex phases along the loops of the underlying graph, was acknowledged for its interest in optimizing or suppressing transport on specific topologies. We argue that the quantum-classical distance, a figure of merit which was introduced to capture the difference in dynamics between a CTQW and its classical, stochastic counterpart, guides the optimization of parameters of the Hamiltonian to achieve better quantum transport on cycle graphs and spatial search to the quantum speed limit without an oracle on complete graphs, the latter also implying fast uniform mixing. We compare the variations of this quantity with the 1-norm of coherence and the Inverse Participation Ratio, showing that the quantum-classical distance is linked to both, but in a topology-dependent relation, which is key to spot the most interesting quantum evolution in each case.
We introduce a minimal set of physically motivated postulates that the Hamiltonian H of a continuous-time quantum walk should satisfy in order to properly represent the quantum counterpart of the classical random walk on a given graph. We found that these conditions are satisfied by infinitely many quantum Hamiltonians, which provide novel degrees of freedom for quantum enhanced protocols, In particular, the on-site energies, i.e. the diagonal elements of H, and the phases of the off-diagonal elements are unconstrained on the quantum side. The diagonal elements represent a potential energy landscape for the quantum walk, and may be controlled by the interaction with a classical scalar field, whereas, for regular lattices in generic dimension, the off-diagonal phases of H may be tuned by the interaction with a classical gauge field residing on the edges, e.g., the electro-magnetic vector potential for a charged walker.
Nonclassicality according to the singularity or negativity of the Glauber P-function is a powerful resource in quantum information, with relevant implications in quantum optics. In a Gaussian setting, and for a system of two modes, we explore how P-n onclassicality may be conditionally generated or influenced on one mode by Gaussian measurements on the other mode. Starting from the class of two-mode squeezed thermal states (TMST), we introduce the notion of nonclassical steering (NS) and the graphical tool of Gaussian triangoloids. In particular, we derive a necessary and sufficient condition for a TMST to be nonclassically steerable, and show that entanglement is only necessary. We also apply our criterion to noisy propagation of a twin-beam state, and evaluate the time after which NS is no longer achievable. We then generalize the notion of NS to the full set of Gaussian states of two modes, and recognize that it may occur in a weak form, which does not imply entanglement, and in a strong form that implies EPR-steerability and, a fortiori, also entanglement. These two types of NS coincide exactly for TMSTs, and they merge with the previously known notion of EPR steering. By the same token, we recognize a new operational interpretation of P-nonclassicality: it is the distinctive property that allows one-party entanglement verification on TMSTs.
Singularity or negativity of Glauber P-function is a widespread notion of nonclassicality, with important implications in quantum optics and with the character of an irreducible resource. Here we explore how P-nonclassicality may be generated by cond itional Gaussian measurements on bipartite Gaussian states. This nonclassical steering may occur in a weak form, which does not imply entanglement, and in a strong form that implies EPR-steerability and thus entanglement. We show that field quadratures are the best measurements to remotely generate nonclassicality, and exploit this result to derive necessary and sufficient conditions for weak and strong nonclassical steering. For two-mode squeezed thermal states (TMST), weak and strong nonclassical steering coincide, and merge with the notion of EPR steering. This also provides a new operational interpretation for P-function nonclassicality as the distinctive feature that allows one-party entanglement verification on TMSTs.
We demonstrate the transition from local to global noise in a two-qubit all-optical quantum simulator subject to classical random fluctuations. Qubits are encoded in the polarization degree of freedom of two entangled photons generated by parametric down-conversion (PDC) while the environment is implemented using their spatial degrees of freedom. The ability to manipulate with high accuracy the number of correlated pixels of a spatial-light-modulator and the spectral PDC width, allows us to control the transition from a scenario where the qubits are embedded in local environments to the situation where they are subject to the same global noise. We witness the transition by monitoring the decoherence of the two-qubit state.
We address the use of optical parametric oscillator (OPO) to counteract phase-noise in quantum optical communication channels, and demonstrate reduction of phase diffusion for coherent signals travelling through a suitably tuned OPO. In particular, w e theoretically and experimentally show that there is a threshold value on the phase-noise, above which OPO can be exploited to squeeze phase noise. The threshold depends on the energy of the input coherent state, and on the relevant parameters of the OPO, i.e. gain and input/output and crystal loss rates.
We suggest a method to reconstruct the zero-delay-time second-order correlation function $g^{(2)}(0)$ of Gaussian states using a single homodyne detector. To this purpose, we have found an analytic expression of $g^{(2)}(0)$ for single- and two-mode Gaussian states in terms of the elements of their covariance matrix and the displacement amplitude. In the single-mode case we demonstrate our scheme experimentally, and also show that when the input state is nonclassical, there exist a threshold value of the coherent amplitude, and a range of values of the complex squeezing parameter, above which $g^{(2)}(0) < 1$. For amplitude squeezing and real coherent amplitude, the threshold turns out to be a necessary and sufficient condition for the nonclassicality of the state. Analogous results hold also for two-mode squeezed thermal states.
We suggest an iterative, maximum-likelihood-based, method to reconstruct the photon number distribution of the steady state cavity field of a micromaser starting from the statistics of the atoms leaving the cavity after the interaction. The scheme is based on measuring the atomic populations of probe atoms for different interaction times and works effectively using a small number of atoms and a limited sampling of the interaction times. The method has been tested by numerically simulated experiments showing that it may be reliably used in any micromaser regime leading to high-fidelity reconstructions for single-peaked distributions as well as for double-peaked ones and for trapping states.
Nonlocality of two-mode states of light is addressed by means of CHSH inequality based on displaced on/off photodetection. Effects due to non-unit quantum efficiency and nonzero dark counts are taken into account. Nonlocality of both balanced and unb alanced superpositions of few photon-number states, as well as that of multiphoton twin beams, is investigated. We find that unbalanced superpositions show larger nonlocality than balanced one when noise affects the photodetection process. De-Gaussification by means of (inconclusive) photon subtraction is shown to enhance nonlocality of twin beams in the low energy regime. We also show that when the measurement is described by a POVM, rather than a set of projectors, the maximum achievable value of the Bell parameter in the CHSH inequality is decreased, and is no longer given by the Cirelson bound.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا