ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental realization of local-to-global noise transition in a two-qubit optical simulator

77   0   0.0 ( 0 )
 نشر من قبل Claudia Benedetti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the transition from local to global noise in a two-qubit all-optical quantum simulator subject to classical random fluctuations. Qubits are encoded in the polarization degree of freedom of two entangled photons generated by parametric down-conversion (PDC) while the environment is implemented using their spatial degrees of freedom. The ability to manipulate with high accuracy the number of correlated pixels of a spatial-light-modulator and the spectral PDC width, allows us to control the transition from a scenario where the qubits are embedded in local environments to the situation where they are subject to the same global noise. We witness the transition by monitoring the decoherence of the two-qubit state.

قيم البحث

اقرأ أيضاً

93 - Ming-Zhong Ai , Sai Li , Ran He 2021
For circuit-based quantum computation, experimental implementation of universal set of quantum logic gates with high-fidelity and strong robustness is essential and central. Quantum gates induced by geometric phases, which depend only on global prope rties of the evolution paths, have built-in noise-resilience features. Here, we propose and experimentally demonstrate nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $^{171}mathrm{Yb}^{+}$ ion based on four-level systems with resonant drives. We confirm the implementation with measured gate fidelity through both quantum process tomography and randomized benchmarking methods. Meanwhile, we find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies. Compared with previous implementations on three-level systems, our experiment share both the advantage of fast nonadiabatic evolution and the merit of robustness against systematic errors, and thus retains the main advantage of geometric phases. Therefore, our experiment confirms a promising method for fast and robust holonomic quantum computation.
Systems passing through quantum critical points at finite rates have a finite probability of undergoing transitions between different eigenstates of the instantaneous Hamiltonian. This mechanism was proposed by Kibble as the underlying mechanism for the formation of topological defects in the early universe and by Zurek for condensed matter systems. Here, we use a system of nuclear spins as an experimental quantum simulator undergoing a non-equilibrium quantum phase transition. The experimental data confirm the validity of the Kibble-Zurek mechanism of defect formation.
We present a heralded single-photon source with a much lower level of unwanted background photons in the output channel by using the herald photon to control a shutter in the heralded channel. The shutter is implemented using a simple field programable gate array controlled optical switch.
Based on a `shortcut-to-adiabaticity (STA) scheme, we theoretically design and experimentally realize a set of high-fidelity single-qubit quantum gates in a superconducting Xmon qubit system. Through a precise microwave control, the qubit is driven t o follow a fast `adiabatic trajectory with the assistance of a counter-diabatic field and the correction of derivative removal by adiabatic gates. The experimental measurements of quantum process tomography and interleaved randomized benchmarking show that the process fidelities of our STA quantum gates are higher than 94.9% and the gate fidelities are higher than 99.8%, very close to the state-of-art gate fidelity of 99.9%. An alternate of high-fidelity quantum gates is successfully achieved under the STA protocol.
94 - N. Jiang , Y.-F. Pu , W. Chang 2019
Random access memory is an indispensable device for classical information technology. Analog to this, for quantum information technology, it is desirable to have a random access quantum memory with many memory cells and programmable access to each ce ll. We report an experiment that realizes a random access quantum memory of 105 qubits carried by 210 memory cells in a macroscopic atomic ensemble. We demonstrate storage of optical qubits into these memory cells and their read-out at programmable times by arbitrary orders with fidelities exceeding any classical bound. Experimental realization of a random access quantum memory with many memory cells and programmable control of its write-in and read-out makes an important step for its application in quantum communication, networking, and computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا