ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of the Higgs boson, with mass known to better than the percent level, enables for the first time precision Higgs boson analyses. Toward this goal, we define an expansion formalism of the Higgs boson partial widths and branching fraction s that facilitates such studies. This expansion yields the observables as a perturbative expansion around reference values of Standard Model input observables (quark masses, QCD coupling constant, etc.). We compute the coefficients of the expansion using state-of-the-art results. We also study the various sources of uncertainties in computing the partial widths and branching fractions more precisely. We discuss the impact of these results with efforts to discern new physics through precision Higgs boson studies.
Supersymmetric theories with gravitino dark matter generally do not allow the high reheating temperature required by thermal leptogenesis without running afoul of relic abundance or big bang nucleosynthesis constraints. We report on a successful sear ch for parameter space that does satisfy these requirements. The main implication is the near degeneracy of the gluino with the other neutralinos in the spectrum. The leading discovery channel at the LHC for this scenario is through monojet plus missing energy events.
Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.
We study the scenario of gravitino DM with a general neutralino NLSP in a model independent way. We consider all neutralino decay channels and compare them with the most recent BBN constraints. We check how those bounds are relaxed for a Higgsino or a Wino NLSP in comparison to the Bino neutralino case and look for possible loopholes in the general MSSM parameter space.We determine constraints on the gravitino and neutralino NLSP mass and comment on the possibility of detecting these scenarios at colliders.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا