ﻻ يوجد ملخص باللغة العربية
The discovery of the Higgs boson, with mass known to better than the percent level, enables for the first time precision Higgs boson analyses. Toward this goal, we define an expansion formalism of the Higgs boson partial widths and branching fractions that facilitates such studies. This expansion yields the observables as a perturbative expansion around reference values of Standard Model input observables (quark masses, QCD coupling constant, etc.). We compute the coefficients of the expansion using state-of-the-art results. We also study the various sources of uncertainties in computing the partial widths and branching fractions more precisely. We discuss the impact of these results with efforts to discern new physics through precision Higgs boson studies.
We present an update of the branching ratios for Higgs-boson decays in the Standard Model. We list results for all relevant branching ratios together with corresponding uncertainties resulting from input parameters and missing higher-order correction
While the properties of the 125 GeV Higgs boson-like particle observed by the ATLAS and CMS collaborations are largely compatible with those predicted for the Standard Model state, significant deviations are present in some cases. We, therefore, test
Assuming that the 125 GeV particle observed at the LHC is a composite scalar and responsible for the electroweak gauge symmetry breaking, we consider the possibility that the bound state is generated by a non-Abelian gauge theory with dynamically gen
We assess the extent to which various constrain
We investigate the effects of messenger-matter mixing on the lightest CP-even Higgs boson mass m_h in gauge-mediated supersymmetry breaking models. It is shown that with such mixings m_h can be raised to about 125 GeV, even when the superparticles ha