ﻻ يوجد ملخص باللغة العربية
Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.
I study the prospect of generating mass for symmetry-protected fermions without breaking the symmetry that forbids quadratic mass terms in the Lagrangian. I focus on 1+1 spacetime dimensions in the hope that this can provide guidance for interacting
The boson and fermion particle masses are calculated in a finite quantum field theory. The field theory satisfies Poincare invariance, unitarity and microscopic causality, and all loop graphs are finite to all orders of perturbation theory. The infin
The recent tension between local and early measurements of the Hubble constant can be explained in a particle physics context. A mechanism is presented where this tension is alleviated due to the presence of a Majoron, arising from the spontaneous br
Precision measurements of the Higgs couplings are, for the first time, directly probing the mechanism of fermion mass generation. The purpose of this work is to determine to what extent these measurements can distinguish between the tree-level mechan
We propose a predictive model based on the $SU(3)_Ctimes SU(3)_Ltimes U(1)_X$ gauge symmetry, which is supplemented by the $D_4$ family symmetry and several auxiliary cyclic symmetries whose spontaneous breaking produces the observed SM fermion mass