ترغب بنشر مسار تعليمي؟ اضغط هنا

We establish a relation between entanglement in simple quantum mechanical qubit systems and in wormhole physics as considered in the context of the AdS/CFT correspondence. We show that in both cases, states with the same entanglement structure, indis tinguishable by any local measurement, nevertheless are characterized by a different Berry phase. This feature is experimentally accessible in coupled qubit systems where states with different Berry phase are related by unitary transformations. In the wormhole case, these transformations are identified with a time evolution of one of the two throats.
We consider thermal Wightman correlators in a relativistic quantum field theory in the limit where the spatial momenta of the insertions become large while their frequencies stay fixed. We show that, in this limit, the size of these correlators is bo unded by $e^{-beta R}$, where $R$ is the radius of the smallest sphere that contains the polygon formed by the momenta. We show that perturbative quantum field theories can saturate this bound through suitably high-order loop diagrams. We also consider holographic theories in $d$-spacetime dimensions, where we show that the leading two-point function of generalized free-fields saturates the bound in $d = 2$ and is below the bound for $d > 2$. We briefly discuss interactions in holographic theories and conclude with a discussion of several open problems.
We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.
We present a class of anisotropic brane configurations which shows BKL oscillations near their cosmological singularities. Near horizon limits of these solutions represent Kasner space embedded in AdS background. Dynamical probe branes in these geome tries inherit anisotropies from the background. Amusingly, for a probe M5 brane, we find that there exists a parameter region where three of its world-volume directions expand while the rest contract.
We consider general black hole solutions in five-dimensional spacetime in the presence of a negative cosmological constant. We obtain a cosmological evolution via the gravity/gauge theory duality (holography) by defining appropriate boundary conditio ns on a four-dimensional boundary hypersurface. The standard counterterms are shown to renormalize the bare parameters of the system (the four-dimensional Newtons constant and cosmological constant). We discuss the thermodynamics of cosmological evolution and present various examples. The standard brane-world scenarios are shown to be special cases of our holographic construction.
We argue that a convenient way to analyze instabilities of black holes in AdS space is via Bragg-Williams construction of a free energy function. Starting with a pedagogical review of this construction in condensed matter systems and also its impleme ntation to Hawking-Page transition, we study instabilities associated with hairy black holes and also with the $R$-charged black holes. For the hairy black holes, an analysis of thermal quench is presented.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا