ﻻ يوجد ملخص باللغة العربية
We develop a new method for computing the holographic retarded propagator in generic (non-)equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form at the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.
We present the first exact calculations of the time dependence of causal correlations in driven nonequilibrium states in (2+1)-dimensional systems using holography. Comparing exact results with those obtained from simple prototype geometries that are
We discuss, from a quantum information perspective, recent proposals of Maldacena, Ryu, Takayanagi, van Raamsdonk, Swingle, and Susskind that spacetime is an emergent property of the quantum entanglement of an associated boundary quantum system. We r
We propose a simplified protocol of quantum energy teleportation (QET) for holographic conformal field theory (CFT) in 3-dimensional anti-de Sitter space with or without black hole. As a tentative proposal, we simplify the standard QET by replacing A
We study the entanglement entropy in 1+1 dimensional conformal field theories in the presence of interfaces from a holographic perspective. Compared with the well-known case of boundary conformal field theories, interfaces allow for several interesti
In the previous paper [arXiv:0911.0679], we showed that the Reissner-Nordstrom black hole in the 5-dimensional anti-de Sitter space coupled to the Maxwell theory with the Chern-Simons term is unstable when the Chern-Simons coupling is sufficiently la