ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we consider the inhomogeneous nonlinear Schrodinger equation $ipartial_t u +Delta u=K(x)|u|^alpha u,, u(0)=u_0in H^s({mathbb R}^N),, s=0,,1,$ $Ngeq 1,$ $|K(x)|+|x|^s| abla^sK(x)|lesssim |x|^{-b},$ $0<b<min(2,N-2s),$ $0<alpha<{(4-2b)/(N- 2s)}$. We obtain novel results of global existence for oscillating initial data and scattering theory in a weighted $L^2$-space for a new range $alpha_0(b)<alpha<(4-2b)/N$. The value $alpha_0(b)$ is the positive root of $Nalpha^2+(N-2+2b)alpha-4+2b=0,$ which extends the Strauss exponent known for $b=0$. Our results improve the known ones for $K(x)=mu|x|^{-b}$, $muin mathbb{C}$ and apply for more general potentials. In particular, we show the impact of the behavior of the potential at the origin and infinity on the allowed range of $alpha$. Some decay estimates are also established for the defocusing case. To prove the scattering results, we give a new criterion taking into account the potential $K$.
We investigate the large time behavior of compactly supported solutions for a one-dimensional thin-film equation with linear mobility in the regime of partial wetting. We show the stability of steady state solutions. The proof uses the Lagrangian coo rdinates. Our method is to establish and exploit differential relations between the energy and the dissipation as well as some interpolation inequalities. Our result is different from earlier results because here we consider solutions with finite mass.
166 - Hattab Mouajria , Slim Tayachi , 2019
In this paper we study global well-posedness and long time asymptotic behavior of solutions to the nonlinear heat equation with absorption, $ u_t - Delta u + |u|^alpha u =0$, where $u=u(t,x)in {mathbb R}, $ $(t,x)in (0,infty)times{mathbb R}^N$ and $a lpha>0$. We focus particularly on highly singular initial values which are antisymmetric with respect to the variables $x_1,; x_2,; cdots,; x_m$ for some $min {1,2, cdots, N}$, such as $u_0 = (-1)^mpartial_1partial_2 cdots partial_m|cdot|^{-gamma} in {{mathcal S}({mathbb R}^N)}$, $0 < gamma < N$. In fact, we show global well-posedness for initial data bounded in an appropriate sense by $u_0$, for any $alpha>0$. Our approach is to study well-posedness and large time behavior on sectorial domains of the form $Omega_m = {x in {{mathbb R}^N} : x_1, cdots, x_m > 0}$, and then to extend the results by reflection to solutions on ${{mathbb R}^N}$ which are antisymmetric. We show that the large time behavior depends on the relationship between $alpha$ and $2/(gamma+m)$, and we consider all three cases, $alpha$ equal to, greater than, and less than $2/(gamma+m)$. Our results include, among others, new examples of self-similar and asymptotically self-similar solutions.
In this paper we consider the initial value {problem $partial_{t} u- Delta u=f(u),$ $u(0)=u_0in exp,L^p(mathbb{R}^N),$} where $p>1$ and $f : mathbb{R}tomathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on th e initial data and for nonlinearity $f$ {such that $|f(u)|sim mbox{e}^{|u|^q}$ as $|u|to infty$,} $|f(u)|sim |u|^{m}$ as $uto 0,$ $0<qleq pleq,m,;{N(m-1)over 2}geq p>1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$
In this paper we prove local existence of solutions to the nonlinear heat equation $u_t = Delta u +a |u|^alpha u, ; tin(0,T),; x=(x_1,,cdots,, x_N)in {mathbb R}^N,; a = pm 1,; alpha>0;$ with initial value $u(0)in L^1_{rm{loc}}left({mathbb R}^Nsetminu s{0}right)$, anti-symmetric with respect to $x_1,; x_2,; cdots,; x_m$ and $|u(0)|leq C(-1)^mpartial_{1}partial_{2}cdot cdot cdot partial_{m}(|x|^{-gamma})$ for $x_1>0,; cdots,; x_m>0,$ where $C>0$ is a constant, $min {1,; 2,; cdots,; N},$ $0<gamma<N$ and $0<alpha<2/(gamma+m).$ This gives a local existence result with highly singular initial values. As an application, for $a=1,$ we establish new blowup criteria for $0<alphaleq 2/(gamma+m)$, including the case $m=0.$ Moreover, if $(N-4)alpha<2,$ we prove the existence of initial values $u_0 = lambda f,$ for which the resulting solution blows up in finite time $T_{max}(lambda f),$ if $lambda>0$ is sufficiently small. We also construct blowing up solutions with initial data $lambda_n f$ such that $lambda_n^{[({1over alpha}-{gamma+mover 2})^{-1}]}T_{max}(lambda_n f)$ has different finite limits along different sequences $lambda_nto 0$. Our result extends the known small lambda blow up results for new values of $alpha$ and a new class of initial data.
64 - Slim Tayachi , Hatem Zaag 2016
We consider the semilinear heat equation, to which we add a nonlinear gradient term, with a critical power. We construct a solution which blows up in finite time. We also give a sharp description of its blow-up profile. The proof relies on the reduct ion of the problem to a finite dimensional one, and uses the index theory to conclude. Thanks to the interpretation of the parameters of the finite-dimensional problem in terms of the blow-up time and point, we also show the stability of the constructed solution with respect to initial data. This note presents the results and the main arguments. For the details, we refer to our paper cite{TZ15}.
In this paper we consider the problem: $partial_{t} u- Delta u=f(u),; u(0)=u_0in exp L^p(R^N),$ where $p>1$ and $f : RtoR$ having an exponential growth at infinity with $f(0)=0.$ We prove local well-posedness in $exp L^p_0(R^N)$ for $f(u)sim mbox{e}^ {|u|^q},;0<qleq p,; |u|to infty.$ However, if for some $lambda>0,$ $displaystyleliminf_{sto infty}left(f(s),{rm{e}}^{-lambda s^p}right)>0,$ then non-existence occurs in $exp L^p(R^N).$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $|f(u)|sim |u|^{m}$ as $uto 0,$ ${N(m-1)over 2}geq p$, we show that the solution is global. In particular, $p-1>0$ sufficiently small is allowed. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m$.
In this paper we prove local well-posedness in Orlicz spaces for the biharmonic heat equation $partial_{t} u+ Delta^2 u=f(u),;t>0,;xinR^N,$ with $f(u)sim mbox{e}^{u^2}$ for large $u.$ Under smallness condition on the initial data and for exponential nonlinearity $f$ such that $f(u)sim u^m$ as $uto 0,$ $m$ integer and $N(m-1)/4geq 2$, we show that the solution is global. Moreover, we obtain a decay estimates for large time for the nonlinear biharmonic heat equation as well as for the nonlinear heat equation. Our results extend to the nonlinear polyharmonic heat equation.
We investigate the existence and the boundary regularity of source-type self-similar solutions to the thin-film equation $h_t=-(h^nh_{zzz})_z+(h^{n+3})_{zz},$ $ t>0,, zin R;, h(0,z)= M delta$ where $nin (3/2,3),, M > 0$ and $delta$ is the Dirac mass at the origin. It is known that the leading order expansion near the edge of the support coincides with that of a travelling-wave solution for the standard thin-film equation: $h_t=-(h^nh_{zzz})_z$. In this paper we sharpen this result, proving that the higher order corrections are analytic with respect to three variables: the first one is just the spacial variable, whereas the second and third (except for $n = 2$) are irrational powers of it. It is known that this third order term does not appear for the thin-film equation without gravity.
We study positive blowing-up solutions of systems of the form: $$u_t=delta_1 Delta u+e^{pv},quad v_t= delta_2Delta v+e^{qu},$$ with $delta_1,delta_2>0$ and $p, q>0$. We prove single-point blow-up for large classes of radially decreasing solutions. Th is answers a question left open in a paper of Friedman and Giga~(1987), where the result was obtained only for the equidiffusive case $delta_1=delta_2$ and the proof depended crucially on this assumption.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا