ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-point blow-up for parabolic systems with exponential nonlinearities and unequal diffusivities

35   0   0.0 ( 0 )
 نشر من قبل Slim Tayachi
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study positive blowing-up solutions of systems of the form: $$u_t=delta_1 Delta u+e^{pv},quad v_t= delta_2Delta v+e^{qu},$$ with $delta_1,delta_2>0$ and $p, q>0$. We prove single-point blow-up for large classes of radially decreasing solutions. This answers a question left open in a paper of Friedman and Giga~(1987), where the result was obtained only for the equidiffusive case $delta_1=delta_2$ and the proof depended crucially on this assumption.

قيم البحث

اقرأ أيضاً

In this work, we investigate the problem of finite time blow up as well as the upper bound estimates of lifespan for solutions to small-amplitude semilinear wave equations with mixed nonlinearities $a |u_t|^p+b |u|^q$, posed on asymptotically Euclide an manifolds, which is related to both the Strauss conjecture and Glassey conjecture. In some cases, we obtain existence results, where the lower bound of the lifespan agrees with the upper bound in order. In addition, our results apply for semilinear damped wave equations, when the coefficient of the dissipation term is integrable (without sign condition) and space-independent.
We study the existence of nontrivial solutions for a nonlinear fractional elliptic equation in presence of logarithmic and critical exponential nonlinearities. This problem extends [5] to fractional $N/s$-Laplacian equations with logarithmic nonlinea rity. We overcome the lack of compactness due to the critical exponential nonlinearity by using the fractional Trudinger-Moser inequality. The existence result is established via critical point theory.
The aim of this paper is to analyze a model for chemotaxis based on a local sensing mechanism instead of the gradient sensing mechanism used in the celebrated minimal Keller-Segel model. The model we study has the same entropy as the minimal Keller-S egel model, but a different dynamics to minimize this entropy. Consequently, the conditions on the mass for the existence of stationary solutions or blow-up are the same, however we make the interesting observation that with the local sensing mechanism the blow-up in the case of supercritical mass is delayed to infinite time. Our observation is made rigorous from a mathematical point via a proof of global existence of weak solutions for arbitrary large masses and space dimension. The key difference of our model to the minimal Keller-Segel model is that the structure of the equation allows for a duality estimate that implies a bound on the $(H^1)$-norm of the solutions, which can only grow with a square-root law in time. This additional $(H^1)$-bound implies a lower bound on the entropy, which contrasts markedly with the minimal Keller-Segel model for which it is unbounded from below in the supercritical case. Besides, regularity and uniqueness of solutions are also studied.
We study finite time blow-up and global existence of solutions to the Cauchy problem for the porous medium equation with a variable density $rho(x)$ and a power-like reaction term. We show that for small enough initial data, if $rho(x)sim frac{1}{lef t(log|x|right)^{alpha}|x|^{2}}$ as $|x|to infty$, then solutions globally exist for any $p>1$. On the other hand, when $rho(x)simfrac{left(log|x|right)^{alpha}}{|x|^{2}}$ as $|x|to infty$, if the initial datum is small enough then one has global existence of the solution for any $p>m$, while if the initial datum is large enough then the blow-up of the solutions occurs for any $p>m$. Such results generalize those established in [27] and [28], where it is supposed that $rho(x)sim |x|^{-q}$ for $q>0$ as $|x|to infty$.
We consider a parabolic-type PDE with a diffusion given by a fractional Laplacian operator and with a quadratic nonlinearity of the gradient of the solution, convoluted with a singular term b. Our first result is the well-posedness for this problem: We show existence and uniqueness of a (local in time) mild solution. The main result is about blow-up of said solution, and in particular we find sufficient conditions on the initial datum and on the term b to ensure blow-up of the solution in finite time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا