ترغب بنشر مسار تعليمي؟ اضغط هنا

(Abridged*) Models of the young solar nebula assume a hot initial disk with most volatiles are in the gas phase. The question remains whether an actively accreting disk is warm enough to have gas-phase water up to 50 AU radius. No detailed studies ha ve yet been performed on the extent of snowlines in an embedded accreting disk (Stage 0). Quantify the location of gas-phase volatiles in embedded actively accreting disk system. Two-dimensional physical and radiative transfer models have been used to calculate the temperature structure of embedded protostellar systems. Gas and ice abundances of H$_2$O, CO$_2$, and CO are calculated using the density-dependent thermal desorption formulation. The midplane water snowline increases from 3 to 55 AU for accretion rates through the disk onto the star between $10^{-9}$-$10^{-4} M_{odot} {rm yr^{-1}}$. CO$_2$ can remain in the solid phase within the disk for $dot{M} leq 10^{-5} M_{odot} {rm yr^{-1}}$ down to $sim 20$ AU. Most of the CO is in the gas phase within an actively accreting disk independent of disk properties and accretion rate. The predicted optically thin water isotopolog emission is consistent with the detected H$_2^{18}$O emission toward the Stage 0 embedded young stellar objects, originating from both the disk and the warm inner envelope (hot core). An accreting embedded disk can only account for water emission arising from $R < 50$ AU, however, and the extent rapidly decreases for low accretion rates. Thus, the radial extent of the emission can be measured with ALMA observations and compared to this limit. Volatiles sublimate out to 50 AU in young disks and can reset the chemical content inherited from the envelope in periods of high accretion rates. A hot young solar nebula out to 30 AU can only have occurred during the deeply embedded Stage 0, not during the T-Tauri phase of our early solar system.
223 - Nadia M. Murillo 2015
Due to instrumental limitations and a lack of disk detections, the structure between the envelope and the rotationally supported disk has been poorly studied. This is now possible with ALMA through observations of CO isotopologs and tracers of freeze out. Class 0 sources are ideal for such studies given their almost intact envelope and young disk. The structure of the disk-envelope interface of the prototypical Class 0 source, VLA1623A which has a confirmed Keplerian disk, is constrained from ALMA observations of DCO+ 3-2 and C18O 2-1. The physical structure of VLA1623 is obtained from the large-scale SED and continuum radiative transfer. An analytic model using a simple network coupled with radial density and temperature profiles is used as input for a 2D line radiative transfer calculation for comparison with the ALMA Cycle 0 12m array and Cycle 2 ACA observations of VLA1623. DCO+ emission shows a clumpy structure bordering VLA1623As Keplerian disk, suggesting a cold ring-like structure at the disk-envelope interface. The radial position of the observed DCO+ peak is reproduced in our model only if the regions temperature is between 11-16K, lower than expected from models constrained by continuum and SED. Altering the density has little effect on the DCO+ position, but increased density is needed to reproduce the disk traced in C18O. The DCO+ emission around VLA1623A is the product of shadowing of the envelope by the disk. Disk-shadowing causes a drop in the gas temperature outside of the disk on >200AU scales, encouraging deuterated molecule production. This indicates that the physical structure of the disk-envelope interface differs from the rest of the envelope, highlighting the drastic impact that the disk has on the envelope and temperature structure. The results presented here show that DCO+ is an excellent cold temperature tracer.
Abridged: Recent simulations have explored different ways to form accretion disks around low-mass stars. We aim to present observables to differentiate a rotationally supported disk from an infalling rotating envelope toward deeply embedded young ste llar objects and infer their masses and sizes. Two 3D magnetohydrodynamics (MHD) formation simulations and 2D semi-analytical model are studied. The dust temperature structure is determined through continuum radiative transfer RADMC3D modelling. A simple temperature dependent CO abundance structure is adopted and synthetic spectrally resolved submm rotational molecular lines up to $J_{rm u} = 10$ are simulated. All models predict similar compact components in continuum if observed at the spatial resolutions of 0.5-1$$ (70-140 AU) typical of the observations to date. A spatial resolution of $sim$14 AU and high dynamic range ($> 1000$) are required to differentiate between RSD and pseudo-disk in the continuum. The peak-position velocity diagrams indicate that the pseudo-disk shows a flatter velocity profile with radius than an RSD. On larger-scales, the CO isotopolog single-dish line profiles are similar and are narrower than the observed line widths of low-$J$ lines, indicating significant turbulence in the large-scale envelopes. However a forming RSD can provide the observed line widths of high-$J$ lines. Thus, either RSDs are common or a higher level of turbulence ($b sim 0.8 {rm km s^{-1}}$ ) is required in the inner envelope compared with the outer part. Multiple spatially and spectrally resolved molecular line observations are needed. The continuum data give a better estimate on disk masses whereas the disk sizes can be estimated from the spatially resolved molecular lines observations. The general observable trends are similar between the 2D semi-analytical models and 3D MHD RSD simulations.
34 - Simon Bruderer 2014
(Abridged) Organic molecules are important constituents of protoplanetary disks. Their ro-vibrational lines observed in the near- and mid-infrared are commonly detected toward T Tauri disks. These lines are the only way to probe the chemistry in the inner few au where terrestrial planets form. To understand this chemistry, accurate molecular abundances have to be determined. This is complicated by excitation effects. Most analyses so far have made the assumption of local thermal equilibrium (LTE). Starting from estimates for the collisional rate coefficients of HCN, non-LTE slab models of the HCN emission were calculated to study the importance of different excitation mechanisms. Using a new radiative transfer model, the HCN emission from a full two-dimensional disk was then modeled to study the effect of the non-LTE excitation, together with the line formation. We ran models tailored to the T Tauri disk AS 205 (N) where HCN lines in both the 3 {mu}m and 14 {mu}m bands have been observed by VLT-CRIRES and the Spitzer Space Telescope. Reproducing the observed 3 {mu}m / 14 {mu}m flux ratios requires very high densities and kinetic temperatures ($n > 10^{14}$ cm$^{-3}$ and $T > 750$ K), if only collisional excitation is accounted for. Radiative pumping can, however, excite the lines easily out to considerable radii $sim$ 10 au. Consequently, abundances derived from LTE and non-LTE models do not differ by more than a factor of about 3. Models with both a strongly enhanced abundance within $sim$ 1 au (jump abundance) and constant abundance can reproduce the current observations, but future observations with the MIRI instrument on JWST and METIS on the E-ELT can easily distinguish between the scenarios and test chemical models. Depending on the scenario, ALMA can detect rotational lines within vibrationally excited levels.
(Abridged) Transition disks are recognized by the absence of emission of small dust grains inside a radius of up to several 10s of AUs. Due to the lack of angular resolution and sensitivity, the gas content of such dust holes has not yet been determi ned, but is of importance to constrain the mechanism leading to the dust holes. Transition disks are thought to currently undergo the process of dispersal, setting an end to the giant planet formation process. We present new high-resolution observations with the Atacama Large Millimeter/ submillimeter Array (ALMA) of gas lines towards the transition disk Oph IRS 48 previously shown to host a large dust trap. ALMA has detected the $J=6-5$ line of $^{12}$CO and C$^{17}$O around 690 GHz (434 $mu$m) at a resolution of $sim$0.25$$ corresponding to $sim$30 AU (FWHM). The observed gas lines are used to set constraints on the gas surface density profile. New models of the physical-chemical structure of gas and dust in Oph IRS 48 are developed to reproduce the CO line emission together with the spectral energy distribution (SED) and the VLT-VISIR 18.7 $mu$m dust continuum images. Integrated intensity cuts and the total spectrum from models having different trial gas surface density profiles are compared to observations. Using the derived surface density profiles, predictions for other CO isotopologues are made, which can be tested by future ALMA observations of the object. The derived gas surface density profile points to the clearing of the cavity by one or more massive planet/companion rather than just photoevaporation or grain-growth.
Molecules containing one or a few hydrogen atoms and a heavier atom (hydrides) have been predicted to trace FUV radiation. In some chemical models, FUV emission by the central object or protostar of a star forming region greatly enhances some of the hydride abundances. Two massive regions, W3 IRS5 and AFGL 2591, have been observed in hydride lines by HIFI onboard the {it Herschel Space Observatory}. We use published results as well as new observations of CH$^+$ towards W3 IRS5. Molecular column densities are derived from ground state absorption lines, radiative transfer modeling or rotational diagrams. Models assuming no internal FUV are compared with two-dimensional models including FUV irradiation of outflow walls. We confirm that the effect of FUV is clearly noticeable and greatly improves the fit. The most sensitive molecules to FUV irradiation are CH$^+$ and OH$^+$, enhanced in abundance by many orders of magnitude. Modeling in addition also full line radiative transfer, Bruderer et al (2010b) achieve good agreement of a two-dimensional FUV model with observations of CH$^+$ in AFGL 2591. It is concluded that CH$^+$ and OH$^+$ are good FUV tracers in star-forming regions.
88 - Simon Bruderer 2009
Observations of the high-mass star forming region AFGL 2591 reveal a large abundance of CO+, a molecule known to be enhanced by far UV (FUV) and X-ray irradiation. In chemical models assuming a spherically symmetric envelope, the volume of gas irradi ated by protostellar FUV radiation is very small due to the high extinction by dust. The abundance of CO+ is thus underpredicted by orders of magnitude. In a more realistic model, FUV photons can escape through an outflow region and irradiate gas at the border to the envelope. Thus, we introduce the first 2D axi-symmetric chemical model of the envelope of a high-mass star forming region to explain the CO+ observations as a prototypical FUV tracer. The model assumes an axi-symmetric power-law density structure with a cavity due to the outflow. The local FUV flux is calculated by a Monte Carlo radiative transfer code taking scattering on dust into account. A grid of precalculated chemical abundances, introduced in the first part of this series of papers, is used to quickly interpolate chemical abundances. This approach allows to calculate the temperature structure of the FUV heated outflow walls self-consistently with the chemistry. Synthetic maps of the line flux are calculated using a raytracer code. Single-dish and interferometric observations are simulated and the model results are compared to published and new JCMT and SMA observations. The two-dimensional model of AFGL 2591 is able to reproduce the JCMT single-dish observations and also explains the non-detection by the SMA. We conclude that the observed CO+ line flux and its narrow width can be interpreted by emission from the warm and dense outflow walls irradiated by protostellar FUV radiation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا