ترغب بنشر مسار تعليمي؟ اضغط هنا

A low-mass protostars disk-envelope interface: disk-shadowing evidence from ALMA DCO+ observations of VLA1623

224   0   0.0 ( 0 )
 نشر من قبل Nadia M. Murillo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nadia M. Murillo




اسأل ChatGPT حول البحث

Due to instrumental limitations and a lack of disk detections, the structure between the envelope and the rotationally supported disk has been poorly studied. This is now possible with ALMA through observations of CO isotopologs and tracers of freezeout. Class 0 sources are ideal for such studies given their almost intact envelope and young disk. The structure of the disk-envelope interface of the prototypical Class 0 source, VLA1623A which has a confirmed Keplerian disk, is constrained from ALMA observations of DCO+ 3-2 and C18O 2-1. The physical structure of VLA1623 is obtained from the large-scale SED and continuum radiative transfer. An analytic model using a simple network coupled with radial density and temperature profiles is used as input for a 2D line radiative transfer calculation for comparison with the ALMA Cycle 0 12m array and Cycle 2 ACA observations of VLA1623. DCO+ emission shows a clumpy structure bordering VLA1623As Keplerian disk, suggesting a cold ring-like structure at the disk-envelope interface. The radial position of the observed DCO+ peak is reproduced in our model only if the regions temperature is between 11-16K, lower than expected from models constrained by continuum and SED. Altering the density has little effect on the DCO+ position, but increased density is needed to reproduce the disk traced in C18O. The DCO+ emission around VLA1623A is the product of shadowing of the envelope by the disk. Disk-shadowing causes a drop in the gas temperature outside of the disk on >200AU scales, encouraging deuterated molecule production. This indicates that the physical structure of the disk-envelope interface differs from the rest of the envelope, highlighting the drastic impact that the disk has on the envelope and temperature structure. The results presented here show that DCO+ is an excellent cold temperature tracer.

قيم البحث

اقرأ أيضاً

We perform a sequence of 3D magnetohydrodynamic (MHD) simulations of the outflow-core interaction for a massive protostar forming via collapse of an initial cloud core of $60~{M_odot}$. This allows us to characterize the properties of disk wind drive n outflows from massive protostars, which can allow testing of different massive star formation theories. It also enables us to assess quantitatively the impact of outflow feedback on protostellar core morphology and overall star formation efficiency. We find that the opening angle of the flow increases with increasing protostellar mass, in agreement with a simple semi-analytic model. Once the protostar reaches $sim24~{M_odot}$ the outflows opening angle is so wide that it has blown away most of the envelope, thereby nearly ending its own accretion. We thus find an overall star formation efficiency of $sim50%$, similar to that expected from low-mass protostellar cores. Our simulation results therefore indicate that the MHD disk wind outflow is the dominant feedback mechanism for helping to shape the stellar initial mass function from a given prestellar core mass function.
We report our current SMA and ALMA studies of disk and planet formation around protostars. We have revealed that $r gtrsim$100 AU scale disks in Keplerian rotation are ubiquitous around Class I sources. These Class I Keplerian disks are often embedde d in rotating and infalling protostellar envelopes. The infalling speeds of the protostellar envelopes are typically $sim$ 3-times smaller than the free-fall velocities, and the rotational profiles follow the $r^{-1}$ profile, that is, rotation with the conserved specific angular momentum. Our latest high-resolution ($sim$0$farcs$5) ALMA studies, as well as the other studies in the literature, have unveiled that $r sim$100-AU scale Keplerian disks are also present in several Class 0 protostars, while in the other Class 0 sources the inferred upper limits of the Keplerian disks are very small ($r lessim$20 AU). Our recent data analyses of the ALMA long baseline data of the Class I-II source HL Tau have revealed gaps in molecular gas as well as in dust in the surrounding disk, suggesting the presence of sub-Jovian planets in the disk. These results imply that disk and planet formation should be completed in the protostellar stage.
In this Letter we model the chemistry of DCO$^{+}$ in protoplanetary disks. We find that the overall distribution of the DCO$^{+}$ abundance is qualitatively similar to that of CO but is dominated by thin layer located at the inner disk surface. To u nderstand its distribution, we investigate the different key gas-phase deuteration pathways that can lead to the formation of DCO$^{+}$. Our analysis shows that the recent update in the exothermicity of the reaction involving CH$_2$D$^{+}$ as a parent molecule of DCO$^{+}$ favors deuterium fractionation in warmer conditions. As a result the formation of DCO$^{+}$ is enhanced in the inner warm surface layers of the disk where X-ray ionization occurs. Our analysis points out that DCO$^{+}$ is not a reliable tracer of the CO snow line as previously suggested. We thus predict that DCO$^{+}$ is a tracer of active deuterium and in particular X-ray ionization of the inner disk.
The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracer s of distinct physical regions. In particular, DCO+ is expected to have an enhanced abundance within a few Kelvin of the CO freezeout temperature of 19 K, making it a useful probe of the cold disk midplane. We compare ALMA line observations of HD 163296 to a grid of models. We vary the upper- and lower-limit temperatures of the region in which DCO+ is present as well as the abundance of DCO+ in order to fit channel maps of the DCO+ J=5-4 line. To determine the abundance enhancement compared to the general interstellar medium, we carry out similar fitting to HCO+ J=4-3 and H13CO+ J=4-3 observations. ALMA images show centrally peaked extended emission from HCO+ and H13CO+. DCO+ emission lies in a resolved ring from ~110 to 160 AU. The outer radius approximately corresponds to the size of the CO snowline as measured by previous lower resolution observations of CO lines in this disk. The ALMA DCO+ data now resolve and image the CO snowline directly. In the best fitting models, HCO+ exists in a region extending from the 19 K isotherm to the photodissociation layer with an abundance of 3x10^-10 relative to H2. DCO+ exists within the 19-21 K region of the disk with an abundance ratio [DCO+] / [HCO+] = 0.3. This represents a factor of 10^4 enhancement of the DCO+ abundance within this narrow region of the HD 163296 disk. Such a high enhancement has only previously been seen in prestellar cores. The inferred abundances provide a lower limit to the ionization fraction in the midplane of the cold outer disk (approximately greater than 4x10^-10), and suggest the utility of DCO+ as a tracer of its parent molecule H2D+. Abridged
Abridged: Recent simulations have explored different ways to form accretion disks around low-mass stars. We aim to present observables to differentiate a rotationally supported disk from an infalling rotating envelope toward deeply embedded young ste llar objects and infer their masses and sizes. Two 3D magnetohydrodynamics (MHD) formation simulations and 2D semi-analytical model are studied. The dust temperature structure is determined through continuum radiative transfer RADMC3D modelling. A simple temperature dependent CO abundance structure is adopted and synthetic spectrally resolved submm rotational molecular lines up to $J_{rm u} = 10$ are simulated. All models predict similar compact components in continuum if observed at the spatial resolutions of 0.5-1$$ (70-140 AU) typical of the observations to date. A spatial resolution of $sim$14 AU and high dynamic range ($> 1000$) are required to differentiate between RSD and pseudo-disk in the continuum. The peak-position velocity diagrams indicate that the pseudo-disk shows a flatter velocity profile with radius than an RSD. On larger-scales, the CO isotopolog single-dish line profiles are similar and are narrower than the observed line widths of low-$J$ lines, indicating significant turbulence in the large-scale envelopes. However a forming RSD can provide the observed line widths of high-$J$ lines. Thus, either RSDs are common or a higher level of turbulence ($b sim 0.8 {rm km s^{-1}}$ ) is required in the inner envelope compared with the outer part. Multiple spatially and spectrally resolved molecular line observations are needed. The continuum data give a better estimate on disk masses whereas the disk sizes can be estimated from the spatially resolved molecular lines observations. The general observable trends are similar between the 2D semi-analytical models and 3D MHD RSD simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا