ترغب بنشر مسار تعليمي؟ اضغط هنا

Ro-vibrational excitation of an organic molecule (HCN) in protoplanetary disks

35   0   0.0 ( 0 )
 نشر من قبل Simon Bruderer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Simon Bruderer




اسأل ChatGPT حول البحث

(Abridged) Organic molecules are important constituents of protoplanetary disks. Their ro-vibrational lines observed in the near- and mid-infrared are commonly detected toward T Tauri disks. These lines are the only way to probe the chemistry in the inner few au where terrestrial planets form. To understand this chemistry, accurate molecular abundances have to be determined. This is complicated by excitation effects. Most analyses so far have made the assumption of local thermal equilibrium (LTE). Starting from estimates for the collisional rate coefficients of HCN, non-LTE slab models of the HCN emission were calculated to study the importance of different excitation mechanisms. Using a new radiative transfer model, the HCN emission from a full two-dimensional disk was then modeled to study the effect of the non-LTE excitation, together with the line formation. We ran models tailored to the T Tauri disk AS 205 (N) where HCN lines in both the 3 {mu}m and 14 {mu}m bands have been observed by VLT-CRIRES and the Spitzer Space Telescope. Reproducing the observed 3 {mu}m / 14 {mu}m flux ratios requires very high densities and kinetic temperatures ($n > 10^{14}$ cm$^{-3}$ and $T > 750$ K), if only collisional excitation is accounted for. Radiative pumping can, however, excite the lines easily out to considerable radii $sim$ 10 au. Consequently, abundances derived from LTE and non-LTE models do not differ by more than a factor of about 3. Models with both a strongly enhanced abundance within $sim$ 1 au (jump abundance) and constant abundance can reproduce the current observations, but future observations with the MIRI instrument on JWST and METIS on the E-ELT can easily distinguish between the scenarios and test chemical models. Depending on the scenario, ALMA can detect rotational lines within vibrationally excited levels.

قيم البحث

اقرأ أيضاً

Near-IR observations of protoplanetary disks provide information about the properties of the inner disk. High resolution spectra of abundant molecules such as CO can be used to determine the disk structure in the warm inner parts. The $v2/v1$ ro-vibr ational ratio of $v_{1-0}$ and $v_{2-1}$ transitions has been recently observed to follow distinct trends with the CO emitting radius, in a sample of TTauri and Herbig disks; these trends have been empirically interpreted as due to inner disk depletion from gas and dust. In this work we use existing thermo-chemical disk models to explore the interpretation of these observed trends in ro-vibrational CO emission. We use the radiation thermo-chemical code ProDiMo, exploring a set of previously published models with different disk properties and varying one parameter at a time: the inner radius, the dust-to-gas mass ratio, the gas mass. In addition, we use models where we change the surface density power law index, and employ a larger set of CO ro-vibrational levels, including also fluorescence from the first electronic state. We investigate these models for both TTauri and Herbig star disks. Finally, we include a set of DIANA models for individual TTauri and Herbig disks which were constructed to reproduce a large set of multi-wavelength observations.
146 - Catherine Walsh 2014
(Abridged) Protoplanetary disks are vital objects in star and planet formation, possessing all the material which may form a planetary system orbiting the new star. We investigate the synthesis of complex organic molecules (COMs) in disks to constrai n the achievable chemical complexity and predict species and transitions which may be observable with ALMA. We have coupled a 2D model of a protoplanetary disk around a T Tauri star with a gas-grain chemical network including COMs. We compare compare synthesised line intensities and calculated column densities with observations and determine those COMs which may be observable in future. COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances 1e-6 - 1e-4 that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, 1e-12 - 1e-7. Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards several T Tauri star-disk systems. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Suns natal disk.
Molecular lines observed towards protoplanetary disks carry information about physical and chemical processes associated with planet formation. We present ALMA Band 6 observations of C2H, HCN, and C18O in a sample of 14 disks spanning a range of ages , stellar luminosities, and stellar masses. Using C2H and HCN hyperfine structure fitting and HCN/H13CN isotopologue analysis, we extract optical depth, excitation temperature, and column density radial profiles for a subset of disks. C2H is marginally optically thick (tau ~1-5) and HCN is quite optically thick (tau ~ 5-10) in the inner 200 AU. The extracted temperatures of both molecules are low (10-30K), indicative of either sub-thermal emission from the warm disk atmosphere or substantial beam dilution due to chemical substructure. We explore the origins of C2H morphological diversity in our sample using a series of toy disk models, and find that disk-dependent overlap between regions with high UV fluxes and high atomic carbon abundances can explain a wide range of C2H emission features (e.g. compact vs. extended and ringed vs. ringless emission). We explore the chemical relationship between C2H, HCN, and C18O and find a positive correlation between C2H and HCN fluxes, but no relationship between C2H or HCN with C18O fluxes. We also see no evidence that C2H and HCN are enhanced with disk age. C2H and HCN seem to share a common driver, however more work remains to elucidate the chemical relationship between these molecules and the underlying evolution of C, N, and O chemistries in disks.
119 - Tracy L. Beck 2019
We present results from a survey searching for spatially resolved near-infrared line emission from molecular hydrogen gas in the circumstellar environments of nine young stars: AA Tau, AB Aur, DoAr 21, GG Tau, GM Aur, LkCa 15, LkH$alpha$ 264, UY Aur, and V773 Tau. Prior high-resolution spectra of these stars showed the presence of ro-vibrational H$_2$ line emission at 2.12$mu$m with characteristics more typical of gas located in proto-planetary disks rather than outflows. In this study, we spatially resolve the H$_2$ emission in the eight stars where it is detected. LkCa 15 is the only target that exhibits no appreciable H$_2$ despite a prior detection. We find an anti-correlation between H$_2$ and X-ray luminosities, likely indicating that the X-ray ionization process is not the dominant H$_2$ excitation mechanism in these systems. AA Tau, UY Aur, and V773 Tau show discrete knots of H$_2$, as typically associated with shocks in outflowing gas. UY Aur and V773 Tau exhibit spatially resolved velocity structures, while the other systems have spectrally unresolved emission consistent with systemic velocities. V773 Tau exhibits a complex line morphology indicating the presence of multiple excitation mechanisms, including red and blue-shifted bipolar knots of shock-excited outflowing gas. AB Aur, GM Aur, and LkH$alpha$ 264 have centralized, yet spatially resolved H$_2$ emission consistent with a disk origin. The H$_2$ images of AB Aur reveal spiral structures within the disk, matching those observed in ALMA CO maps. This survey reveals new insights into the structure and excitation of warm gas in the circumstellar environments of these young stars.
The volatile composition of a planet is determined by the inventory of gas and ice in the parent disk. The volatile chemistry in the disk is expected to evolve over time, though this evolution is poorly constrained observationally. We present ALMA ob servations of C18O, C2H, and the isotopologues H13CN, HC15N, and DCN towards five Class 0/I disk candidates. Combined with a sample of fourteen Class II disks presented in Bergner et al. (2019b), this data set offers a view of volatile chemical evolution over the disk lifetime. Our estimates of C18O abundances are consistent with a rapid depletion of CO in the first ~0.5-1 Myr of the disk lifetime. We do not see evidence that C2H and HCN formation are enhanced by CO depletion, possibly because the gas is already quite under-abundant in CO. Further CO depletion may actually hinder their production by limiting the gas-phase carbon supply. The embedded sources show several chemical differences compared to the Class II stage, which seem to arise from shielding of radiation by the envelope (impacting C2H formation and HC15N fractionation) and sublimation of ices from infalling material (impacting HCN and C18O abundances). Such chemical differences between Class 0/I and Class II sources may affect the volatile composition of planet-forming material at different stages in the disk lifetime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا