ترغب بنشر مسار تعليمي؟ اضغط هنا

Inpatient falls are a serious safety issue in hospitals and healthcare facilities. Recent advances in video analytics for patient monitoring provide a non-intrusive avenue to reduce this risk through continuous activity monitoring. However, in-bed fa ll risk assessment systems have received less attention in the literature. The majority of prior studies have focused on fall event detection, and do not consider the circumstances that may indicate an imminent inpatient fall. Here, we propose a video-based system that can monitor the risk of a patient falling, and alert staff of unsafe behaviour to help prevent falls before they occur. We propose an approach that leverages recent advances in human localisation and skeleton pose estimation to extract spatial features from video frames recorded in a simulated environment. We demonstrate that body positions can be effectively recognised and provide useful evidence for fall risk assessment. This work highlights the benefits of video-based models for analysing behaviours of interest, and demonstrates how such a system could enable sufficient lead time for healthcare professionals to respond and address patient needs, which is necessary for the development of fall intervention programs.
Image convolutions have been a cornerstone of a great number of deep learning advances in computer vision. The research community is yet to settle on an equivalent operator for sparse, unstructured continuous data like point clouds and event streams however. We present an elegant sparse matrix-based interpretation of the convolution operator for these cases, which is consistent with the mathematical definition of convolution and efficient during training. On benchmark point cloud classification problems we demonstrate networks built with these operations can train an order of magnitude or more faster than top existing methods, whilst maintaining comparable accuracy and requiring a tiny fraction of the memory. We also apply our operator to event stream processing, achieving state-of-the-art results on multiple tasks with streams of hundreds of thousands of events.
Objective: Epilepsy is one of the most prevalent neurological diseases among humans and can lead to severe brain injuries, strokes, and brain tumors. Early detection of seizures can help to mitigate injuries, and can be used to aid the treatment of p atients with epilepsy. The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event. Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset, and have been identified as a real-world solution to the seizure prediction problem. However, little attention has been given for designing such models to adapt to the high inter-subject variability in EEG data. Methods: We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects. Results: Proposed models achieve state-of-the-art performance for seizure prediction on the CHB-MIT-EEG dataset, demonstrating 88.81% and 91.54% accuracy respectively. Conclusions: The Siamese model trained on the proposed learning strategy is able to learn patterns related to patient variations in data while predicting seizures. Significance: Our models show superior performance for patient-independent seizure prediction, and the same architecture can be used as a patient-specific classifier after model adaptation. We are the first study that employs model interpretation to understand classifier behavior for the task for seizure prediction, and we also show that the MFCC feature map utilized by our models contains predictive biomarkers related to interictal and pre-ictal brain states.
Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Som e researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset.
This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state. We propose the use of recurrent neural networks and exploit recent advancements in attention based learning to segment the PCG signal. This allows the network to identify the most salient aspects of the signal and disregard uninformative information. The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings. Furthermore, we empirically analyse different feature combinations including envelop features, wavelet and Mel Frequency Cepstral Coefficients (MFCC), and provide quantitative measurements that explore the importance of different features in the proposed approach. We demonstrate that a recurrent neural network coupled with attention mechanisms can effectively learn from irregular and noisy PCG recordings. Our analysis of different feature combinations shows that MFCC features and their derivatives offer the best performance compared to classical wavelet and envelop features. Heart sound segmentation is a crucial pre-processing step for many diagnostic applications. The proposed method provides a cost effective alternative to labour extensive manual segmentation, and provides a more accurate segmentation than existing methods. As such, it can improve the performance of further analysis including the detection of murmurs and ejection clicks. The proposed method is also applicable for detection and segmentation of other one dimensional biomedical signals.
A precise, controllable, interpretable and easily trainable text removal approach is necessary for both user-specific and large-scale text removal applications. To achieve this, we propose a one-stage mask-based text inpainting network, MTRNet++. It has a novel architecture that includes mask-refine, coarse-inpainting and fine-inpainting branches, and attention blocks. With this architecture, MTRNet++ can remove text either with or without an external mask. It achieves state-of-the-art results on both the Oxford and SCUT datasets without using external ground-truth masks. The results of ablation studies demonstrate that the proposed multi-branch architecture with attention blocks is effective and essential. It also demonstrates controllability and interpretability.
In the domain of machine learning, Neural Memory Networks (NMNs) have recently achieved impressive results in a variety of application areas including visual question answering, trajectory prediction, object tracking, and language modelling. However, we observe that the attention based knowledge retrieval mechanisms used in current NMNs restricts them from achieving their full potential as the attention process retrieves information based on a set of static connection weights. This is suboptimal in a setting where there are vast differences among samples in the data domain; such as anomaly detection where there is no consistent criteria for what constitutes an anomaly. In this paper, we propose a plastic neural memory access mechanism which exploits both static and dynamic connection weights in the memory read, write and output generation procedures. We demonstrate the effectiveness and flexibility of the proposed memory model in three challenging anomaly detection tasks in the medical domain: abnormal EEG identification, MRI tumour type classification and schizophrenia risk detection in children. In all settings, the proposed approach outperforms the current state-of-the-art. Furthermore, we perform an in-depth analysis demonstrating the utility of neural plasticity for the knowledge retrieval process and provide evidence on how the proposed memory model generates sparse yet informative memory outputs.
Text removal algorithms have been proposed for uni-lingual scripts with regular shapes and layouts. However, to the best of our knowledge, a generic text removal method which is able to remove all or user-specified text regions regardless of font, sc ript, language or shape is not available. Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting. To fill this gap, we propose a mask-based text removal network (MTRNet). MTRNet is a conditional adversarial generative network (cGAN) with an auxiliary mask. The introduced auxiliary mask not only makes the cGAN a generic text eraser, but also enables stable training and early convergence on a challenging large-scale synthetic dataset, initially proposed for text detection in real scenes. Whats more, MTRNet achieves state-of-the-art results on several real-world datasets including ICDAR 2013, ICDAR 2017 MLT, and CTW1500, without being explicitly trained on this data, outperforming previous state-of-the-art methods trained directly on these datasets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا