ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the statistics of the largest eigenvalues of $p times p$ sample covariance matrices $Sigma_{p,n} = M_{p,n}M_{p,n}^{*}$ when the entries of the $p times n$ matrix $M_{p,n}$ are sparse and have a distribution with tail $t^{-alpha}$, $alpha>0$. On average the number of nonzero entries of $M_{p,n}$ is of order $n^{mu+1}$, $0 leq mu leq 1$. We prove that in the large $n$ limit, the largest eigenvalues are Poissonian if $alpha<2(1+mu^{{-1}})$ and converge to a constant in the case $alpha>2(1+mu^{{-1}})$. We also extend the results of Benaych-Georges and Peche [7] in the Hermitian case, removing restrictions on the number of nonzero entries of the matrix.
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species intera ct at random. However, in natural systems pairs of species have well-defined interactions (e.g., predator-prey, mutualistic or competitive). Here we extend Mays results to these relationships and find remarkable differences between predator-prey interactions, which increase stability, and mutualistic and competitive, which are destabilizing. We provide analytic stability criteria for all cases. These results have broad applicability in ecology. For example, we show that, surprisingly, the probability of stability for predator-prey networks is decreased when we impose realistic food web structure or we introduce a large preponderance of weak interactions. Similarly, stability is negatively impacted by nestedness in bipartite mutualistic networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا