ترغب بنشر مسار تعليمي؟ اضغط هنا

We describes a new approach for performing quantitative structure-factor analysis and density measurements of liquids using x-ray diffraction with a pink-spectrum x-ray source. The methodology corrects for the pink beam effect by performing a Taylor series expansion of the diffraction signal. The mean density, background scale factor, peak x-ray energy about which the expansion is performed, and the cutoff radius for density measurement are estimated using the derivative-free optimization scheme. The formalism is demonstrated for a simulated radial distribution function for tin. Finally, the proposed methodology is applied to experimental data on shock compressed tin recorded at the Dynamic Compression Sector at the Advanced Photon Source, with derived densities comparing favorably to other experimental results and the equations of state of tin.
The top-k recommendation is a fundamental task in recommendation systems which is generally learned by comparing positive and negative pairs. The Contrastive Loss (CL) is the key in contrastive learning that has received more attention recently and w e find it is well suited for top-k recommendations. However, it is a problem that CL treats the importance of the positive and negative samples as the same. On the one hand, CL faces the imbalance problem of one positive sample and many negative samples. On the other hand, positive items are so few in sparser datasets that their importance should be emphasized. Moreover, the other important issue is that the sparse positive items are still not sufficiently utilized in recommendations. So we propose a new data augmentation method by using multiple positive items (or samples) simultaneously with the CL loss function. Therefore, we propose a Multi-Sample based Contrastive Loss (MSCL) function which solves the two problems by balancing the importance of positive and negative samples and data augmentation. And based on the graph convolution network (GCN) method, experimental results demonstrate the state-of-the-art performance of MSCL. The proposed MSCL is simple and can be applied in many methods. We will release our code on GitHub upon the acceptance.
188 - Shuai Zhang , Jeremy Orosco , 2021
High frequency thickness mode ultrasound is an energy-efficient way to atomize high-viscosity fluid at high flow rate into fine aerosol mists of micron-sized droplet distributions. However the complex physics of the atomization process is not well un derstood. It is found that with low power the droplet vibrates at low frequency (O[100 Hz]) when driven by high-frequency ultrasound (O[1 MHz] and above). To study the mechanism of the energy transfer that spans these vastly different timescales, we measure the droplets interfacial response to 6.6~MHz ultrasound excitation using high-speed digital holography. We show that the onset of low-frequency capillary waves is driven by feedback interplay between the acoustic radiation pressure distribution and the droplet surface. These dynamics are mediated by the Young-Laplace boundary between the droplet interior and ambient environment. Numerical simulations are performed via global optimization against the rigorously defined interfacial physics. The proposed pressure-interface feedback model is explicitly based on the pressure distribution hypothesis. For low power acoustic excitation, the simulations reveal a stable oscillatory feedback that induces capillary wave formation. The simulation results are confirmed with direct observations of the microscale droplet interface dynamics as provided by the high resolution holographic measurements. The pressure-interface feedback model accurately predicts the on-source vibration amplitude required to initiate capillary waves, and interfacial oscillation amplitude and frequency. The radiation pressure distribution is likewise confirmed with particle migration observations. Viscous effects on wave attenuation are also studied by comparing experimental and simulated results for a pure water droplet and 90% wt.- 10% wt. glycerol-water solution droplet.
Person re-identification (ReID) aims to re-identify a person from non-overlapping camera views. Since person ReID data contains sensitive personal information, researchers have adopted federated learning, an emerging distributed training method, to m itigate the privacy leakage risks. However, existing studies rely on data labels that are laborious and time-consuming to obtain. We present FedUReID, a federated unsupervised person ReID system to learn person ReID models without any labels while preserving privacy. FedUReID enables in-situ model training on edges with unlabeled data. A cloud server aggregates models from edges instead of centralizing raw data to preserve data privacy. Moreover, to tackle the problem that edges vary in data volumes and distributions, we personalize training in edges with joint optimization of cloud and edge. Specifically, we propose personalized epoch to reassign computation throughout training, personalized clustering to iteratively predict suitable labels for unlabeled data, and personalized update to adapt the server aggregated model to each edge. Extensive experiments on eight person ReID datasets demonstrate that FedUReID not only achieves higher accuracy but also reduces computation cost by 29%. Our FedUReID system with the joint optimization will shed light on implementing federated learning to more multimedia tasks without data labels.
Balancing exploration and exploitation (EE) is a fundamental problem in contex-tual bandit. One powerful principle for EE trade-off isOptimism in Face of Uncer-tainty(OFU), in which the agent takes the action according to an upper confidencebound (UC B) of reward. OFU has achieved (near-)optimal regret bound for lin-ear/kernel contextual bandits. However, it is in general unknown how to deriveefficient and effective EE trade-off methods for non-linearcomplex tasks, suchas contextual bandit with deep neural network as the reward function. In thispaper, we propose a novel OFU algorithm namedregularized OFU(ROFU). InROFU, we measure the uncertainty of the reward by a differentiable function andcompute the upper confidence bound by solving a regularized optimization prob-lem. We prove that, for multi-armed bandit, kernel contextual bandit and neuraltangent kernel bandit, ROFU achieves (near-)optimal regret bounds with certainuncertainty measure, which theoretically justifies its effectiveness on EE trade-off.Importantly, ROFU admits a very efficient implementation with gradient-basedoptimizer, which easily extends to general deep neural network models beyondneural tangent kernel, in sharp contrast with previous OFU methods. The em-pirical evaluation demonstrates that ROFU works extremelywell for contextualbandits under various settings.
365 - Da Yu , Huishuai Zhang , Wei Chen 2021
We propose a reparametrization scheme to address the challenges of applying differentially private SGD on large neural networks, which are 1) the huge memory cost of storing individual gradients, 2) the added noise suffering notorious dimensional dep endence. Specifically, we reparametrize each weight matrix with two emph{gradient-carrier} matrices of small dimension and a emph{residual weight} matrix. We argue that such reparametrization keeps the forward/backward process unchanged while enabling us to compute the projected gradient without computing the gradient itself. To learn with differential privacy, we design emph{reparametrized gradient perturbation (RGP)} that perturbs the gradients on gradient-carrier matrices and reconstructs an update for the original weight from the noisy gradients. Importantly, we use historical updates to find the gradient-carrier matrices, whose optimality is rigorously justified under linear regression and empirically verified with deep learning tasks. RGP significantly reduces the memory cost and improves the utility. For example, we are the first able to apply differential privacy on the BERT model and achieve an average accuracy of $83.9%$ on four downstream tasks with $epsilon=8$, which is within $5%$ loss compared to the non-private baseline but enjoys much lower privacy leakage risk.
Adversarial training (AT) is one of the most effective strategies for promoting model robustness, whereas even the state-of-the-art adversarially trained models struggle to exceed 60% robust test accuracy on CIFAR-10 without additional data, which is far from practical. A natural way to break this accuracy bottleneck is to introduce a rejection option, where confidence is a commonly used certainty proxy. However, the vanilla confidence can overestimate the model certainty if the input is wrongly classified. To this end, we propose to use true confidence (T-Con) (i.e., predicted probability of the true class) as a certainty oracle, and learn to predict T-Con by rectifying confidence. We prove that under mild conditions, a rectified confidence (R-Con) rejector and a confidence rejector can be coupled to distinguish any wrongly classified input from correctly classified ones, even under adaptive attacks. We also quantify that training R-Con to be aligned with T-Con could be an easier task than learning robust classifiers. In our experiments, we evaluate our rectified rejection (RR) module on CIFAR-10, CIFAR-10-C, and CIFAR-100 under several attacks, and demonstrate that the RR module is well compatible with different AT frameworks on improving robustness, with little extra computation.
Named entity recognition (NER) is a widely studied task in natural language processing. Recently, a growing number of studies have focused on the nested NER. The span-based methods, considering the entity recognition as a span classification task, ca n deal with nested entities naturally. But they suffer from the huge search space and the lack of interactions between entities. To address these issues, we propose a novel sequence-to-set neural network for nested NER. Instead of specifying candidate spans in advance, we provide a fixed set of learnable vectors to learn the patterns of the valuable spans. We utilize a non-autoregressive decoder to predict the final set of entities in one pass, in which we are able to capture dependencies between entities. Compared with the sequence-to-sequence method, our model is more suitable for such unordered recognition task as it is insensitive to the label order. In addition, we utilize the loss function based on bipartite matching to compute the overall training loss. Experimental results show that our proposed model achieves state-of-the-art on three nested NER corpora: ACE 2004, ACE 2005 and KBP 2017. The code is available at https://github.com/zqtan1024/sequence-to-set.
74 - Tu Zheng , Shuai Zhao , Yang Liu 2021
Bounding box regression is an important component in object detection. Recent work has shown the promising performance by optimizing the Intersection over Union (IoU) as loss. However, IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes, and the model could easily ignore these simple cases. In this paper, we propose Side Overlap (SO) loss by maximizing the side overlap of two bounding boxes, which puts more penalty for low overlapping bounding box cases. Besides, to speed up the convergence, the Corner Distance (CD) is added into the objective function. Combining the Side Overlap and Corner Distance, we get a new regression objective function, Side and Corner Align Loss (SCALoss). The SCALoss is well-correlated with IoU loss, which also benefits the evaluation metric but produces more penalty for low-overlapping cases. It can serve as a comprehensive similarity measure, leading the better localization performance and faster convergence speed. Experiments on COCO and PASCAL VOC benchmarks show that SCALoss can bring consistent improvement and outperform $ell_n$ loss and IoU based loss with popular object detectors such as YOLOV3, SSD, Reppoints, Faster-RCNN.
55 - Xu Wang , Shuai Zhao , Bo Cheng 2021
Question Answering (QA) models over Knowledge Bases (KBs) are capable of providing more precise answers by utilizing relation information among entities. Although effective, most of these models solely rely on fixed relation representations to obtain answers for different question-related KB subgraphs. Hence, the rich structured information of these subgraphs may be overlooked by the relation representation vectors. Meanwhile, the direction information of reasoning, which has been proven effective for the answer prediction on graphs, has not been fully explored in existing work. To address these challenges, we propose a novel neural model, Relation-updated Direction-guided Answer Selector (RDAS), which converts relations in each subgraph to additional nodes to learn structure information. Additionally, we utilize direction information to enhance the reasoning ability. Experimental results show that our model yields substantial improvements on two widely used datasets.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا