ﻻ يوجد ملخص باللغة العربية
Named entity recognition (NER) is a widely studied task in natural language processing. Recently, a growing number of studies have focused on the nested NER. The span-based methods, considering the entity recognition as a span classification task, can deal with nested entities naturally. But they suffer from the huge search space and the lack of interactions between entities. To address these issues, we propose a novel sequence-to-set neural network for nested NER. Instead of specifying candidate spans in advance, we provide a fixed set of learnable vectors to learn the patterns of the valuable spans. We utilize a non-autoregressive decoder to predict the final set of entities in one pass, in which we are able to capture dependencies between entities. Compared with the sequence-to-sequence method, our model is more suitable for such unordered recognition task as it is insensitive to the label order. In addition, we utilize the loss function based on bipartite matching to compute the overall training loss. Experimental results show that our proposed model achieves state-of-the-art on three nested NER corpora: ACE 2004, ACE 2005 and KBP 2017. The code is available at https://github.com/zqtan1024/sequence-to-set.
Recognizing named entities (NEs) is commonly conducted as a classification problem that predicts a class tag for an NE candidate in a sentence. In shallow structures, categorized features are weighted to support the prediction. Recent developments in
Named entity recognition (NER) is a well-studied task in natural language processing. However, the widely-used sequence labeling framework is difficult to detect entities with nested structures. In this work, we view nested NER as constituency parsin
Named entity recognition (NER) is a well-studied task in natural language processing. Traditional NER research only deals with flat entities and ignores nested entities. The span-based methods treat entity recognition as a span classification task. A
The dominant approaches for named entity recognition (NER) mostly adopt complex recurrent neural networks (RNN), e.g., long-short-term-memory (LSTM). However, RNNs are limited by their recurrent nature in terms of computational efficiency. In contras
In biomedical literature, it is common for entity boundaries to not align with word boundaries. Therefore, effective identification of entity spans requires approaches capable of considering tokens that are smaller than words. We introduce a novel, s