ترغب بنشر مسار تعليمي؟ اضغط هنا

Degraded K-user broadcast channels (BC) are studied when receivers are facilitated with cache memories. Lower and upper bounds are derived on the capacity-memory tradeoff, i.e., on the largest rate of reliable communication over the BC as a function of the receivers cache sizes, and the bounds are shown to match for some special cases. The lower bounds are achieved by two new coding schemes that benefit from non-uniform cache assignment. Lower and upper bounds are also established on the global capacity-memory tradeoff, i.e., on the largest capacity-memory tradeoff that can be attained by optimizing the receivers cache sizes subject to a total cache memory budget. The bounds coincide when the total cache memory budget is sufficiently small or sufficiently large, characterized in terms of the BC statistics. For small cache memories, it is optimal to assign all the cache memory to the weakest receiver. In this regime, the global capacity-memory tradeoff grows as the total cache memory budget divided by the number of files in the system. In other words, a perfect global caching gain is achievable in this regime and the performance corresponds to a system where all cache contents in the network are available to all receivers. For large cache memories, it is optimal to assign a positive cache memory to every receiver such that the weaker receivers are assigned larger cache memories compared to the stronger receivers. In this regime, the growth rate of the global capacity-memory tradeoff is further divided by the number of users, which corresponds to a local caching gain. Numerical indicate suggest that a uniform cache-assignment of the total cache memory is suboptimal in all regimes unless the BC is completely symmetric. For erasure BCs, this claim is proved analytically in the regime of small cache-sizes.
Improved lower bounds on the average and the worst-case rate-memory tradeoffs for the Maddah-Ali&Niesen coded caching scenario are presented. For any number of users and files and for arbitrary cache sizes, the multiplicative gap between the exact ra te-memory tradeoff and the new lower bound is less than 2.315 in the worst-case scenario and less than 2.507 in the average-case scenario.
The downlink of symmetric Cloud Radio Access Networks (C-RANs) with multiple relays and a single receiver is studied. Lower and upper bounds are derived on the capacity. The lower bound is achieved by Martons coding which facilitates dependence among the multiple-access channel inputs. The upper bound uses Ozarows technique to augment the system with an auxiliary random variable. The bounds are studied over scalar Gaussian C-RANs and are shown to meet and characterize the capacity for interesting regimes of operation.
The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modeled using a finite-state Markov chain representing a channel state. Two scenarios are considered: (i) when the transmitter has causal knowledge of th e channel state (i.e., the state is visible), and (ii) when the channel state is unknown at the transmitter, but observations of it are available at the transmitter through feedback (i.e., the state is hidden). In both scenarios, matching outer and inner bounds on the rates of communication are derived and the capacity region is determined. It is shown that similar results carry over to channels with memory and delayed feedback and memoryless compound channels with feedback. When the state is visible, the capacity region has a single-letter characterization and is in terms of a linear program. Two optimal coding schemes are devised that use feedback to keep track of the sent/received packets via a network of queues: a probabilistic scheme and a deterministic backpressure-like algorithm. The former bases its decisions solely on the past channel state information and the latter follows a max-weight queue-based policy. The performance of the algorithms are analyzed using the frameworks of rate stability in networks of queues, max-flow min-cut duality in networks, and finite-horizon Lyapunov drift analysis. When the state is hidden, the capacity region does not have a single-letter characterization and is, in this sense, uncomputable. Approximations of the capacity region are provided and two optimal coding algorithms are outlined. The first algorithm is a probabilistic coding scheme that bases its decisions on the past L acknowledgments and its achievable rate region approaches the capacity region exponentially fast in L. The second algorithm is a backpressure-like algorithm that performs optimally in the long run.
This paper takes a rate-distortion approach to understanding the information-theoretic laws governing cache-aided communications systems. Specifically, we characterise the optimal tradeoffs between the delivery rate, cache capacity and reconstruction distortions for a single-user problem and some special cases of a two-user problem. Our analysis considers discrete memoryless sources, expected- and excess-distortion constraints, and separable and f-separable distortion functions. We also establish a strong converse for separable-distortion functions, and we show that los
We study noisy broadcast networks with local cache memories at the receivers, where the transmitter can pre-store information even before learning the receivers requests. We mostly focus on packet-erasure broadcast networks with two disjoint sets of receivers: a set of weak receivers with all-equal erasure probabilities and equal cache sizes and a set of strong receivers with all-equal erasure probabilities and no cache memories. We present lower and upper bounds on the capacity-memory tradeoff of this network. The lower bound is achieved by a new joint cache-channel coding idea and significantly improves on schemes that are based on separate cache-channel coding. We discuss how this coding idea could be extended to more general discrete memoryless broadcast channels and to unequal cache sizes. Our upper bound holds for all stochastically degraded broadcast channels. For the described packet-erasure broadcast network, our lower and upper bounds are tight when there is a single weak receiver (and any number of strong receivers) and the cache memory size does not exceed a given threshold. When there are a single weak receiver, a single strong receiver, and two files, then we can strengthen our upper and lower bounds so as they coincide over a wide regime of cache sizes. Finally, we completely characterise the rate-memory tradeoff for general discrete-memoryless broadcast channels with arbitrary cache memory sizes and arbitrary (asymmetric) rates when all receivers always demand exactly the same file.
A class of diamond networks is studied where the broadcast component is orthogonal and modeled by two independent bit-pipes. New upper and lower bounds on the capacity are derived. The proof technique for the upper bound generalizes bounding techniqu es of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network (2011). The lower bound is based on Martons coding technique and superposition coding. The bounds are evaluated for Gaussian and binary adder multiple access channels (MACs). For Gaussian MACs, both the lower and upper bounds strengthen the Kang-Liu bounds and establish capacity for interesting ranges of bit-pipe capacities. For binary adder MACs, the capacity is established for all ranges of bit-pipe capacities.
The two-receiver broadcast packet erasure channel with feedback and memory is studied. Memory is modeled using a finite-state Markov chain representing a channel state. The channel state is unknown at the transmitter, but observations of this hidden Markov chain are available at the transmitter through feedback. Matching outer and inner bounds are derived and the capacity region is determined. The capacity region does not have a single-letter characterization and is, in this sense, uncomputable. Approximations of the capacity region are provided and two optimal coding algorithms are outlined. The first algorithm is a probabilistic coding scheme that bases its decisions on the past L feedback sequences. Its achievable rate-region approaches the capacity region exponentially fast in L. The second algorithm is a backpressure-like algorithm that performs optimally in the long run.
The problem of multicasting two nested messages is studied over a class of networks known as combination networks. A source multicasts two messages, a common and a private message, to several receivers. A subset of the receivers (called the public re ceivers) only demand the common message and the rest of the receivers (called the private receivers) demand both the common and the private message. Three encoding schemes are discussed that employ linear superposition coding and their optimality is proved in special cases. The standard linear superposition scheme is shown to be optimal for networks with two public receivers and any number of private receivers. When the number of public receivers increases, this scheme stops being optimal. Two improvements are discussed: one using pre-encoding at the source, and one using a block Markov encoding scheme. The rate-regions that are achieved by the two schemes are characterized in terms of feasibility problems. Both inner-bounds are shown to be the capacity region for networks with three (or fewer) public and any number of private receivers. Although the inner bounds are not comparable in general, it is shown through an example that the region achieved by the block Markov encoding scheme may strictly include the region achieved by the pre-encoding/linear superposition scheme. Optimality results are founded on the general framework of Balister and Bollobas (2012) for sub-modularity of the entropy function. An equivalent graphical representation is introduced and a lemma is proved that might be of independent interest. Motivated by the connections between combination networks and broadcast channels, a new block Markov encoding scheme is proposed for broadcast channels with two nested messages. The rate-region that is obtained includes the previously known rate-regions. It remains open whether this inclusion is strict.
A class of diamond networks are studied where the broadcast component is modelled by two independent bit-pipes. New upper and low bounds are derived on the capacity which improve previous bounds. The upper bound is in the form of a max-min problem, w here the maximization is over a coding distribution and the minimization is over an auxiliary channel. The proof technique generalizes bounding techniques of Ozarow for the Gaussian multiple description problem (1981), and Kang and Liu for the Gaussian diamond network (2011). The bounds are evaluated for a Gaussian multiple access channel (MAC) and the binary adder MAC, and the capacity is found for interesting ranges of the bit-pipe capacities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا