ﻻ يوجد ملخص باللغة العربية
A class of diamond networks is studied where the broadcast component is orthogonal and modeled by two independent bit-pipes. New upper and lower bounds on the capacity are derived. The proof technique for the upper bound generalizes bounding techniques of Ozarow for the Gaussian multiple description problem (1981) and Kang and Liu for the Gaussian diamond network (2011). The lower bound is based on Martons coding technique and superposition coding. The bounds are evaluated for Gaussian and binary adder multiple access channels (MACs). For Gaussian MACs, both the lower and upper bounds strengthen the Kang-Liu bounds and establish capacity for interesting ranges of bit-pipe capacities. For binary adder MACs, the capacity is established for all ranges of bit-pipe capacities.
A class of diamond networks are studied where the broadcast component is modelled by two independent bit-pipes. New upper and low bounds are derived on the capacity which improve previous bounds. The upper bound is in the form of a max-min problem, w
The relay broadcast channel (RBC) is considered, in which a transmitter communicates with two receivers with the assistance of a relay. Based on different degradation orders among the relay and the receivers outputs, three types of physically degrade
A broadcast network is a classical network with all source messages collocated at a single source node. For broadcast networks, the standard cut-set bounds, which are known to be loose in general, are closely related to union as a specific set operat
In wireless data networks, communication is particularly susceptible to eavesdropping due to its broadcast nature. Security and privacy systems have become critical for wireless providers and enterprise networks. This paper considers the problem of s
In this paper, the capacity region of the Layered Packet Erasure Broadcast Channel (LPE-BC) with Channel Output Feedback (COF) available at the transmitter is investigated. The LPE-BC is a high-SNR approximation of the fading Gaussian BC recently pro