ﻻ يوجد ملخص باللغة العربية
Improved lower bounds on the average and the worst-case rate-memory tradeoffs for the Maddah-Ali&Niesen coded caching scenario are presented. For any number of users and files and for arbitrary cache sizes, the multiplicative gap between the exact rate-memory tradeoff and the new lower bound is less than 2.315 in the worst-case scenario and less than 2.507 in the average-case scenario.
In an $(H,r)$ combination network, a single content library is delivered to ${Hchoose r}$ users through deployed $H$ relays without cache memories, such that each user with local cache memories is simultaneously served by a different subset of $r$ re
Recently multi-access coded caching schemes with number of users different from the number of caches obtained from a special case of resolvable designs called Cross Resolvable Designs (CRDs) have been reported and a new performance metric called rate
In a traditional $(H, r)$ combination network, each user is connected to a unique set of $r$ relays. However, few research efforts to consider $(H, r, u)$ multiaccess combination network problem where each $u$ users are connected to a unique set of $
The coded caching problem with secrecy constraint i.e., the users should not be able to gain any information about the content of the files that they did not demand, is known as the secretive coded caching problem. This was proposed by Ravindrakumar
In cache-aided networks, the server populates the cache memories at the users during low-traffic periods, in order to reduce the delivery load during peak-traffic hours. In turn, there exists a fundamental trade-off between the delivery load on the s