ترغب بنشر مسار تعليمي؟ اضغط هنا

Priced timed games are optimal-cost reachability games played between two players---the controller and the environment---by moving a token along the edges of infinite graphs of configurations of priced timed automata. The goal of the controller is to reach a given set of target locations as cheaply as possible, while the goal of the environment is the opposite. Priced timed games are known to be undecidable for timed automata with $3$ or more clocks, while they are known to be decidable for automata with $1$ clock. In an attempt to recover decidability for priced timed games Bouyer, Markey, and Sankur studied robust priced timed games where the environment has the power to slightly perturb delays proposed by the controller. Unfortunately, however, they showed that the natural problem of deciding the existence of optimal limit-strategy---optimal strategy of the controller where the perturbations tend to vanish in the limit---is undecidable with $10$ or more clocks. In this paper we revisit this problem and improve our understanding of the decidability of these games. We show that the limit-strategy problem is already undecidable for a subclass of robust priced timed games with $5$ or more clocks. On a positive side, we show the decidability of the existence of almost optimal strategies for the same subclass of one-clock robust priced timed games by adapting a classical construction by Bouyer at al. for one-clock priced timed games.
Nondeterminism in scheduling is the cardinal reason for difficulty in proving correctness of concurrent programs. A powerful proof strategy was recently proposed [6] to show the correctness of such programs. The approach captured data-flow dependenci es among the instructions of an interleaved and error-free execution of threads. These data-flow dependencies were represented by an inductive data-flow graph (iDFG), which, in a nutshell, denotes a set of executions of the concurrent program that gave rise to the discovered data-flow dependencies. The iDFGs were further transformed in to alternative finite automatons (AFAs) in order to utilize efficient automata-theoretic tools to solve the problem. In this paper, we give a novel and efficient algorithm to directly construct AFAs that capture the data-flow dependencies in a concurrent program execution. We implemented the algorithm in a tool called ProofTraPar to prove the correctness of finite state cyclic programs under the sequentially consistent memory model. Our results are encouranging and compare favorably to existing state-of-the-art tools.
Model checking timed automata becomes increasingly complex with the increase in the number of clocks. Hence it is desirable that one constructs an automaton with the minimum number of clocks possible. The problem of checking whether there exists a ti med automaton with a smaller number of clocks such that the timed language accepted by the original automaton is preserved is known to be undecidable. In this paper, we give a construction, which for any given timed automaton produces a timed bisimilar automaton with the least number of clocks. Further, we show that such an automaton with the minimum possible number of clocks can be constructed in time that is doubly exponential in the number of clocks of the original automaton.
Most proof systems for concurrent programs assume the underlying memory model to be sequentially consistent (SC), an assumption which does not hold for modern multicore processors. These processors, for performance reasons, implement relaxed memory m odels. As a result of this relaxation a program, proved correct on the SC memory model, might execute incorrectly. To ensure its correctness under relaxation, fence instructions are inserted in the code. In this paper we show that the SC proof of correctness of an algorithm, carried out in the proof system of [Sou84], identifies per-thread instruction orderings sufficient for this SC proof. Further, to correctly execute this algorithm on an underlying relaxed memory model it is sufficient to respect only these orderings by inserting fence instructions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا