ترغب بنشر مسار تعليمي؟ اضغط هنا

One of the solutions enabling performance progress, which can overcome the downsizing limit in silicon technology, is the integration of different functional optoelectronic devices within a single chip. Silicon with its indirect band gap has poor opt ical properties, which is its main drawback. Therefore, a different material has to be used for the on-chip optical interconnections, e.g. a direct band gap III-V compound semiconductor material. In the paper we present the synthesis of single crystalline InP nanodots (NDs) on silicon using combined ion implantation and millisecond flash lamp annealing techniques. The optical and microstructural investigations reveal the growth of high-quality (100)-oriented InP nanocrystals. The current-voltage measurements confirm the formation of an n-p heterojunction between the InP NDs and silicon. The main advantage of our method is its integration with large-scale silicon technology, which allows applying it for Si-based optoelectronic devices.
The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ions implantatio n at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is 3d6 configuration, the same as in bulk Mn5Ge3. A large positive magnetoresistance has been observed at low temperatures. It can be explained by the conductivity inhomogeneity in the magnetic/semiconductor hybrid system.
Ferromagnetic InMnAs has been prepared by Mn ion implantation and pulsed laser annealing. The InMnAs layer reveals a saturated magnetization of 2.6 mu_B/Mn at 5 K and a perpendicular magnetic anisotropy. The Curie temperature is determined to be 46 K , which is higher than those in previous reports with similar Mn concentrations. Ferromagnetism is further evidenced by the large magnetic circular dichroism.
Crystalline Mn5Ge3 nanomagnets are formed inside a Mn-diluted Ge matrix using Mn ion implantation. A temperature-dependent memory effect and slow magnetic relaxation are observed below the superparamagnetic blocking temperature of Mn5Ge3. Our finding s corroborate that the observed spin-glass-like features are caused by the size distribution of Mn5Ge3 nanomagnets, rather than by the inter-particle interaction through the Mn-diluted Ge matrix.
Taking Mn doped Germanium as an example, we evoke the consideration of a two-band-like conduction in diluted ferromagnetic semiconductor (FMS). The main argument for claiming Ge:Mn as a FMS is the occurrence of the anomalous Hall effect (AHE). Usuall y, the reported AHE (1) is observable at temperatures above 10 K, (2) exhibits no hysteresis, and (3) changes the sign of slope. We observed a similar Hall resistance in Mn implanted Ge with the Mn concentration as low as 0.004%. We show that the puzzling AHE features can be explained by considering a two-band-like conduction in Ge:Mn.
In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and mag netization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.
The magneto-transport properties of nanocomposite C:Co (15 and 40 at.% Co) thin films are investigated. The films were grown by ion beam co-sputtering on thermally oxidized silicon substrates in the temperature range from 200 to 500 degC. Two major e ffects are reported: (i) a large anomalous Hall effect amounting to 2 mu ohm cm, and (ii) a negative magnetoresistance. Both the field-dependent resistivity and Hall resistivity curves coincide with the rescaled magnetization curves, a finding that is consistent with spin-dependent transport. These findings suggest that C:Co nanocomposites are promising candidates for carbon-based Hall sensors and spintronic devices.
We present superparamagnetic clusters of structurally highly disordered Co-Zn-O created by high fluence Co ion implantation into ZnO (0001) single crystals at low temperatures. This secondary phase cannot be detected by common x-ray diffraction but i s observed by high-resolution transmission electron microscopy. In contrast to many other secondary phases in a ZnO matrix it induces low-field anomalous Hall effect and thus is a candidate for magneto-electronics applications.
Unexpected ferromagnetism has been observed in carbon doped ZnO films grown by pulsed laser deposition [Phys. Rev. Lett. 99, 127201 (2007)]. In this letter, we introduce carbon into ZnO films by ion implantation. Room temperature ferromagnetism has b een observed. Our analysis demonstrates that (1) C-doped ferromagnetic ZnO can be achieved by an alternative method, i.e. ion implantation, and (2) the chemical involvement of carbon in the ferromagnetism is indirectly proven.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا