ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - Bin Ao , Sheng Zhang , Caiyong Ye 2013
The dynamic behaviors of microRNA and mRNA under external stress are studied with biological experiments and mathematics models. In this study, we developed a mathematic model to describe the biological phenomenon and for the first time reported that , as responses to external stress, the expression levels of microRNA and mRNA sustained oscillation. And the period of the oscillation is much shorter than several reported transcriptional regulation negative feedback loop.
We have studied frustrated kagome arrays and unfrustrated honeycomb arrays of magnetostatically-interacting single-domain ferromagnetic islands with magnetization normal to the plane. The measured pairwise spin correlations of both lattices can be re produced by models based solely on nearest-neighbor correlations. The kagome array has qualitatively different magnetostatics but identical lattice topology to previously-studied artificial spin ice systems composed of in-plane moments. The two systems show striking similarities in the development of moment pair correlations, demonstrating a universality in artificial spin ice behavior independent of specific realization in a particular material system.
With the modified Riemann-Liouville fractional derivative, a fractional Tu formula is presented to investigate generalized Hamilton structure of fractional soliton equations. The obtained results can be reduced to the classical Hamilton hierachy of ordinary calculus.
We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of stat es in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of $t/U$ changes from zero to negative on approaching the critical point of quantum phase transition.
We consider the decoherence of photons suffering in phase-damping channels. By exploring the evolutions of single-photon polarization states and two-photon polarization-entangled states, we find that different frequency spectrum envelopes of photons induce different decoherence processes. A white frequency spectrum can lead the decoherence to an ideal Markovian process. Some color frequency spectrums can induce asymptotical decoherence, while, some other color frequency spectrums can make coherence vanish periodically with variable revival amplitudes. These behaviors result from the non-Markovian effects on the decoherence process, which may give rise to a revival of coherence after complete decoherence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا