ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative entanglement measure for bipartite separable mixed states

171   0   0.0 ( 0 )
 نشر من قبل Cheng-Jie Zhang
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We define a negative entanglement measure for separable states which shows that how much entanglement one should compensate the unentangled state at least for changing it into an entangled state. For two-qubit systems and some special classes of states in higher-dimensional systems, the explicit formula and the lower bounds for the negative entanglement measure have been presented, and it always vanishes for bipartite separable pure states. The negative entanglement measure can be used as a useful quantity to describe the entanglement dynamics and the quantum phase transition. In the transverse Ising model, the first derivatives of negative entanglement measure diverge on approaching the critical value of the quantum phase transition, although these two-site reduced density matrices have no entanglement at all. In the 1D Bose-Hubbard model, the NEM as a function of $t/U$ changes from zero to negative on approaching the critical point of quantum phase transition.



قيم البحث

اقرأ أيضاً

59 - Ting Yu , J. H. Eberly 2005
We examine a class of bipartite mixed states which we call X states and report several analytic results related to the occurrence of so-called entanglement sudden death (ESD) under time evolution in the presence of common types of environmental noise . Avoidance of sudden death by application of purely local operations is shown to be feasible in some cases.
It was shown that two distant particles can be entangled by sending a third particle never entangled with the other two [T. S. Cubitt et al., Phys. Rev. Lett. 91, 037902 (2003)]. In this paper, we investigate a class of three-qubit separable states t o distribute entanglement by the same way, and calculate the maximal amount of entanglement which two particles of separable states in the class can have after applying the way.
78 - Ting Yu , J. H. Eberly 2007
In this paper, we extract from concurrence its variable part, denoted $Lambda$, and use $Lambda$ as a time-dependent measure of distance, either postive or negative, from the separability boundary. We use it to investigate entanglement dynamics of tw o isolated but initially entangled qubits, each coupled to its own environment.
Unambiguous state discrimination of two mixed bipartite states via local operations and classical communications (LOCC) is studied and compared with the result of a scheme realized via global measurement. We show that the success probability of a glo bal scheme for mixed-state discrimination can be achieved perfectly by the local scheme. In addition, we simulate this discrimination via a pair of pure entangled bipartite states. This simulation is perfect for local rather than global schemes due to the existence of entanglement and global coherence in the pure states. We also prove that LOCC protocol and the sequential state discrimination (SSD) can be interpreted in a unified view. We then hybridize the LOCC protocol with three protocols (SSD, reproducing and broadcasting) relying on classical communications. Such hybridizations extend the gaps between the optimal success probability of global and local schemes, which can be eliminated only for the SSD rather than the other two protocols.
Three distant labs A, B and C, having no prior entanglement can establish a shared GHZ state, when one of them say A sends two particles to B and C for their local actions. The mediating particles remain separable from each other and from the particl es of A, B and C. We prove that in this way, GHZ states are shared with a probability $frac{1}{7}$. We also show how separable particles can be mediated to establish arbitrary $d-$ dimensional Bell states between distant labs. Our method is constructive and allows generaization of GHZ sharing between any number of parties and in any dimension. The proposed method may facilitate the construction of multi-node quantum networks and many other processes which use multi-partite entangled states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا