ترغب بنشر مسار تعليمي؟ اضغط هنا

Master equations are partial differential equations for measure-dependent unknowns, and are introduced to describe asymptotic equilibrium of large scale mean-field interacting systems, especially in games and control theory. In this paper we introduc e new semilinear master equations whose unknowns are functionals of both paths and path measures. They include state-dependent master equations, path-dependent partial differential equations (PPDEs), history information dependent master equations and time inconsistent (e.g. time-delayed) equations, which naturally arise in stochastic control theory and games. We give a classical solution to the master equation by introducing a new notation called strong vertical derivative (SVD) for path-dependent functionals, inspired by Dupires vertical derivative, and applying stochastic forward-backward system argument. Moreover, we consider a general non-smooth case with a functional mollifying method.
This paper is devoted to the existence, uniqueness and comparison theorem on unbounded solutions of a scalar backward stochastic differential equation (BSDE) whose generator grows (with respect to both unknown variables $y$ and $z$) in a super-linear way like $|y||ln |y||^{(lambda+1/2)wedge 1}+|z||ln |z||^{lambda}$ for some $lambdageq 0$. For the following four different ranges of the growth power parameter $lambda$: $lambda=0$, $lambdain (0,1/2)$, $lambda=1/2$ and $lambda>1/2$, we give reasonably weakest possible different integrability conditions of the terminal value for the existence of an unbounded solution to the BSDE. In the first two cases, they are stronger than the $Lln L$-integrability and weaker than any $L^p$-integrability with $p>1$; in the third case, the integrability condition is just some $L^p$-integrability for $p>1$; and in the last case, the integrability condition is stronger than any $L^p$-integrability with $p>1$ and weaker than any $exp(L^epsilon)$-integrability with $epsilonin (0,1)$. We also establish the comparison theorem, which yields naturally the uniqueness, when either generator of both BSDEs is convex (concave) in both unknown variables $(y,z)$, or satisfies a one-sided Osgood condition in the first unknown variable $y$ and a uniform continuity condition in the second unknown variable $z$.
196 - Ziyu Huang , Shanjian Tang 2021
In this paper, we develop a PDE approach to consider the optimal strategy of mean field controlled stochastic system. Firstly, we discuss mean field SDEs and associated Fokker-Plank eqautions. Secondly, we consider a fully-coupled system of forward-b ackward PDEs. The backward one is the Hamilton-Jacobi-Bellman equation while the forward one is the Fokker-Planck equation. Our main result is to show the existence of classical solutions of the forward-backward PDEs in the class $H^{1+frac{1}{4},2+frac{1}{2}}([0,T]timesmathbb{R}^n)$ by use of the Schauder fixed point theorem. Then, we use the solution to give the optimal strategy of the mean field stochastic control problem. Finally, we give an example to illustrate the role of our main result.
332 - Ziyu Huang , Shanjian Tang 2021
In this paper, we consider the mean field game with a common noise and allow the state coefficients to vary with the conditional distribution in a nonlinear way. We assume that the cost function satisfies a convexity and a weak monotonicity property. We use the sufficient Pontryagin principle for optimality to transform the mean field control problem into existence and uniqueness of solution of conditional distribution dependent forward-backward stochastic differential equation (FBSDE). We prove the existence and uniqueness of solution of the conditional distribution dependent FBSDE when the dependence of the state on the conditional distribution is sufficiently small, or when the convexity parameter of the running cost on the control is sufficiently large. Two different methods are developed. The first method is based on a continuation of the coefficients, which is developed for FBSDE by Hu and Peng cite{YH2}. We apply the method to conditional distribution dependent FBSDE. The second method is to show the existence result on a small time interval by Banach fixed point theorem and then extend the local solution to the whole time interval.
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochas tic analysis techniques, we propose an approximation procedure to prove existence and uniqueness result when the generator is convex (or concave) and terminal value is of exponential moments of arbitrary order. Finally, we also establish the well-posedness of multi-dimensional G-BSDEs with diagonally quadratic generators.
This paper is concerned with convergence of stochastic gradient algorithms with momentum terms in the nonconvex setting. A class of stochastic momentum methods, including stochastic gradient descent, heavy ball, and Nesterovs accelerated gradient, is analyzed in a general framework under mild assumptions. Based on the convergence result of expected gradients, we prove the almost sure convergence by a detailed discussion of the effects of momentum and the number of upcrossings. It is worth noting that there are not additional restrictions imposed on the objective function and stepsize. Another improvement over previous results is that the existing Lipschitz condition of the gradient is relaxed into the condition of Holder continuity. As a byproduct, we apply a localization procedure to extend our results to stochastic stepsizes.
We study quantitative stability of the solutions to Markovian quadratic reflected BSDEs with bounded terminal data. By virtue of the BMO martingale and change of measure techniques, we obtain the estimate of the variation of the solutions in terms of the difference of the driven forward processes. In addition, we propose a truncated discrete-time numerical scheme for quadratic reflected BSDEs, and obtain the explicit rate of convergence by applying the quantitative stability result.
This paper is devoted to a general solvability of a multi-dimensional backward stochastic differential equation (BSDE) of a diagonally quadratic generator $g(t,y,z)$, by relaxing the assumptions of citet{HuTang2016SPA} on the generator and terminal v alue. More precisely, the generator $g(t,y,z)$ can have more general growth and continuity in $y$ in the local solution; while in the global solution, the generator $g(t,y,z)$ can have a skew sub-quadratic but in addition strictly and diagonally quadratic growth in the second unknown variable $z$, or the terminal value can be unbounded but the generator $g(t,y,z)$ is diagonally dependent on the second unknown variable $z$ (i.e., the $i$-th component $g^i$ of the generator $g$ only depends on the $i$-th row $z^i$ of the variable $z$ for each $i=1,cdots,n$ ). Three new results are established on the local and global solutions when the terminal value is bounded and the generator $g$ is subject to some general assumptions. When the terminal value is unbounded but is of exponential moments of arbitrary order, an existence and uniqueness result is given under the assumptions that the generator $g(t,y,z)$ is Lipschitz continuous in the first unknown variable $y$, and varies with the second unknown variable $z$ in a diagonal , component-wisely convex or concave, and quadratically growing way, which seems to be the first general solvability of systems of quadratic BSDEs with unbounded terminal values. This generalizes and strengthens some existing results via some new ideas.
172 - Dong Cao , Shanjian Tang 2019
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori e stimates which implies the uniqueness, for solutions of the $G$-BSDE. Moreover, focusing our discussion at the Markovian setting, we give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
71 - Ying Hu 2018
The optimal stochastic control problem with a quadratic cost functional for linear partial differential equations (PDEs) driven by a state-and control-dependent white noise is formulated and studied. Both finite-and infinite-time horizons are conside red. The multi-plicative white noise dynamics of the system give rise to a new phenomenon of singularity to the associated Riccati equation and even to the Lyapunov equation. Well-posedness of both Riccati equation and Lyapunov equation are obtained for the first time. The linear feedback coefficient of the optimal control turns out to be singular and expressed in terms of the solution of the associated Riccati equation. The null controllability is shown to be equivalent to the existence of the solution to Riccati equation with the singular terminal value. Finally, the controlled Anderson model is addressed as an illustrating example.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا