ترغب بنشر مسار تعليمي؟ اضغط هنا

Generically, the gravitational-wave or tensor-mode contribution to the primordial curvature spectrum of inflation is tiny if the field-range of the inflaton is much smaller than the Planck scale. We show that this pessimistic conclusion is naturally avoided in a rather broad class of small-field models. More specifically, we consider models where an axion-like shift symmetry keeps the inflaton potential flat (up to non-perturbative cosine-shaped modulations), but inflation nevertheless ends in a waterfall-regime, as is typical for hybrid inflation. In such hybrid natural inflation scenarios (examples are provided by Wilson line inflation and fluxbrane inflation), the slow-roll parameter $epsilon$ can be sizable during an early period (relevant for the CMB spectrum). Subsequently, $epsilon$ quickly becomes very small before the tachyonic instability eventually terminates the slow roll regime. In this scenario, one naturally generates a considerable tensor-mode contribution in the curvature spectrum, collecting nevertheless the required amount of e-foldings during the final period of inflation. While non-observation of tensors by Planck is certainly not a problem, a discovery in the medium to long term future is realistic.
Fluxbrane inflation is a stringy version of D-term inflation in which two fluxed D7-branes move towards each other until their (relative) gauge flux annihilates. Compared to brane-antibrane inflation, the leading-order inflationary potential of this scenario is much flatter. In the present paper we first discuss a new explicit moduli stabilisation procedure combining the F- and D-term scalar potentials: It is based on fluxed D7-branes in a geometry with three large four-cycles of hierarchically different volumes. Subsequently, we combine this moduli stabilisation with the fluxbrane inflation idea, demonstrating in particular that CMB data (including cosmic string constraints) can be explained within our setup of hierarchical large volume CY compactifications. We also indicate how the eta-problem is expected to re-emerge through higher-order corrections and how it might be overcome by further refinements of our model. Finally, we explain why recently raised concerns about constant FI terms do not affect the consistent, string-derived variant of D-term inflation discussed in this paper.
As a first step towards inflation in genuinely F-theoretic setups, we propose a scenario where the inflaton is the relative position of two 7-branes on holomorphic 4-cycles. Non-supersymmetric gauge flux induces an attractive inter-brane potential. T he latter is sufficiently flat in the supergravity regime of large volume moduli. Thus, in contrast to brane-antibrane inflation, fluxbrane inflation does not require warping. We calculate the inflaton potential both in the supergravity approximation and via an open-string one-loop computation on toroidal backgrounds. This leads us to propose a generalisation to genuine Calabi-Yau manifolds. We also comment on competing F-term effects. The end of inflation is marked by the condensation of tachyonic recombination fields between the 7-branes, triggering the formation of a bound state described as a stable extension along the 7-brane divisor. Hence our model fits in the framework of hybrid D-term inflation. We work out the main phenomenological properties of our D-term inflaton potential. In particular, our scenario of D7/D7 inflation avoids the familiar observational constraints associated with cosmic strings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا