ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluxbrane Inflation

93   0   0.0 ( 0 )
 نشر من قبل Sebastian C. Kraus
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

As a first step towards inflation in genuinely F-theoretic setups, we propose a scenario where the inflaton is the relative position of two 7-branes on holomorphic 4-cycles. Non-supersymmetric gauge flux induces an attractive inter-brane potential. The latter is sufficiently flat in the supergravity regime of large volume moduli. Thus, in contrast to brane-antibrane inflation, fluxbrane inflation does not require warping. We calculate the inflaton potential both in the supergravity approximation and via an open-string one-loop computation on toroidal backgrounds. This leads us to propose a generalisation to genuine Calabi-Yau manifolds. We also comment on competing F-term effects. The end of inflation is marked by the condensation of tachyonic recombination fields between the 7-branes, triggering the formation of a bound state described as a stable extension along the 7-brane divisor. Hence our model fits in the framework of hybrid D-term inflation. We work out the main phenomenological properties of our D-term inflaton potential. In particular, our scenario of D7/D7 inflation avoids the familiar observational constraints associated with cosmic strings.

قيم البحث

اقرأ أيضاً

We analyze the quantum-corrected moduli space of D7-brane position moduli with special emphasis on inflationary model building. D7-brane deformation moduli are key players in two recently proposed inflationary scenarios: The first, D7-brane chaotic i nflation, is a variant of axion monodromy inflation which allows for an effective 4d supergravity description. The second, fluxbrane inflation, is a stringy version of D-term hybrid inflation. Both proposals rely on the fact that D7-brane coordinates enjoy a shift-symmetric Kahler potential at large complex structure of the Calabi-Yau threefold, making them naturally lighter than other fields. This shift symmetry is inherited from the mirror-dual Type IIA Wilson line on a D6-brane at large volume. The inflaton mass can be provided by a tree-level term in the flux superpotential. It induces a monodromy and, if tuned to a sufficiently small value, can give rise to a large-field model of inflation. Alternatively, by a sensible flux choice one can completely avoid a tree-level mass term, in which case the inflaton potential is induced via loop corrections. The positive vacuum energy can then be provided by a D-term, leading to a small-field model of hybrid natural inflation. In the present paper, we continue to develop a detailed understanding of the D7-brane moduli space focusing among others on shift-symmetry-preserving flux choices, flux-induced superpotential in Type IIB/F-theory language, and loop corrections. While the inflationary applications represent our main physics motivation, we expect that some of our findings will be useful for other phenomenological issues involving 7-branes in Type IIB/F-theory constructions.
We present a new mechanism for slow-roll inflation based on higher dimensional supersymmetric gauge theory compactified to four dimensions with twisted (supersymmetry breaking) boundary conditions. These boundary conditions lead to a potential for di rections in field space that would have been flat were supersymmetry preserved. For field values in these directions much larger than the supersymmetry-breaking scale, the flatness of the potential is nearly restored. Starting in this nearly flat region, inflation can occur as the theory relaxes towards the origin of field space. Near the origin, the potential becomes steep and the theory quickly descends to a confining gauge theory in which the inflaton does not exist as a particle. This confining gauge theory could be part of the Standard Model (QCD) or a natural dark matter sector; we comment on various scenarios for reheating. As a specific illustration of this mechanism, we discuss 4+1 dimensional maximally supersymmetric gauge theory on a circle with antiperiodic boundary conditions for fermions. When the theory is weakly coupled at the compactification scale, we calculate the inflaton potential directly in field theory by integrating out the heavy W-bosons and their superpartners. At strong coupling the model can be studied using a gravity dual, which realizes a new model of brane inflation on a non-supersymmetric throat geometry. Assuming there exists a UV completion that avoids the eta-problem, predictions from our model are consistent with present observations, and imply a small tensor-to-scalar ratio.
We constructed a model of natural inflation in the context of $alpha$-attractor supergravity, in which both the dilaton field and the axion field are light during inflation, and the inflaton may be a combination of the two. The T-model version of thi s theory is defined on the Poincare disk with radius |Z| = 1. It describes a Mexican hat potential with the flat axion direction corresponding to a circle of radius |Z| < 1. The axion decay constant $f_{a}$ in this theory can be exponentially large because of the hyperbolic geometry of the Poincare disk. Depending on initial conditions, this model may describe $alpha$-attractor inflation driven by the radial component of the inflaton field, natural inflation driven by the axion field, or a sequence of these two regimes. We also construct the E-model version of this theory, which has similar properties. In addition, we describe generalized $alpha$-attractor models where the potential can be singular at the boundary of the moduli space, and show that they can provide a simple solution for the problem of initial conditions for the models with plateau potentials.
162 - Benjamin Shlaer 2012
We illustrate a framework for constructing models of chaotic inflation where the inflaton is the position of a D3 brane along the universal cover of a string compactification. In our scenario, a brane rolls many times around a non-trivial one-cycle, thereby unwinding a Ramond-Ramond flux. These flux monodromies are similar in spirit to the monodromies of Silverstein, Westphal, and McAllister, and their four-dimensional description is that of Kaloper and Sorbo. Assuming moduli stabilization is rigid enough, the large-field inflationary potential is protected from radiative corrections by a discrete shift symmetry.
We present a model of inflation in which the inflaton field is charged under a triplet of $U(1)$ gauge fields. The model enjoys an internal $O(3)$ symmetry supporting the isotropic FRW solution. With an appropriate coupling between the gauge fields a nd the inflaton field, the system reaches an attractor regime in which the gauge fields furnish a small constant fraction of the total energy density. We decompose the scalar perturbations into the adiabatic and entropy modes and calculate the contributions of the gauge fields into the curvature perturbations power spectrum. We also calculate the entropy power spectrum and the adiabatic-entropy cross correlation. In addition to the metric tensor perturbations, there are tensor perturbations associated with the gauge field perturbations which are coupled to metric tensor perturbations. We show that the correction in primordial gravitational tensor power spectrum induced from the matter tensor perturbation is a sensitive function of the gauge coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا